1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. SOME FURTHER CALCULATIONS RELATED TO :F AND W 275


LEMMA 6.87. Under the equations gtgij = -2Rij and
{)
8t Xi = jj.dXi - Y'iR + 2 (\7 xX)i,

we have

( :t + jj. - 2X · \7) ( R + 2gij\7iXj - JXJ


2
)

I

1 1

2

= 2 Rij + 2 (Y'iXj + Y'jXi) -^3


2


JY'iXj - Y'jXiJ^2 •


This extends the calculation (6.22) of Perelman.
7.1.2. An extension of the monotonicity formula. A generalization of
Perelman's energy monotonicity formula is given by the following.

LEMMA 6.88. If gtgij = -2Rij and


~~ = jj.f +a ( R + 2/j.f - JV' fJ


2
),
for some a E JR, then

( ~ - (2a + 1) fj. + 2a\7 f · \7) ( R + 2/j.f - JV' fJ^2 ) = 2 J~j + \7iY'jfJ^2.


and


PROOF. We have by direct calculation,

:t JV'fJ^2 = 2RijY'dY'jf +2\i'f · \7 [/j.f +a (R+ 2/j.f-JV'fJ


2

)]

= (2a + 1) jj. JV'fJ^2 - 2(2a+1) JY'iY'jfJ^2 -4a~jY'dY'jf



  • 2\i'f · \7 [a ( R-JV'JJ


2

) J

:t (jj.J) = 2~jY'iY'jf + jj. ( jj.j +a ( R + 2/j.f - JV' JJ^2 ))


= (2a + 1) fj. (Dl.J) + 2RijY'iY'jf + fj. (a ( R-J\7 JJ^2 )).


Hence


( :t - (2a + 1) jj.) ( R + 2/j.f - JV' JJ


2
)

= -2a/j.R + 2 JRijJ^2



  • 4RijY'iY'jf + 2/j. (a ( R - JV' JJ


2
))


  • 2(2a+1) JY'iY'jfJ^2 + 4aRijY'dY'jf-2\i'f · \7 [a ( R-JY'JJ


2

) J

= 2 JRijJ^2 + 4Rij Y'iY'jf + 2 JY'iY'jfJ^2 - 2a\7 f · \7 ( R + 2/j.f - JV' JJ^2 )


and the lemma follows. 0


From this we deduce the following.
Free download pdf