302 7. THE REDUCED DISTANCE
equation:
d2 ';JO ~ (-o ) d';ji d';jj d2 ((12) 0 (- ) (Cl) 2
dCl2 + ~ rij^0 (3 dCl dCl = dCl2 4 + I'oo /3 (Cl) 2
o::;;i,j::;;n
1 1 ((1)2
= 2 - 2 (er:) 2 = O.
(This last equation justifies defining the time component of '/3 (Cl) as Cl^2 / 4,
and in particular, the change of variables Cl = 2y'T.) For the space compo-
nents, the geodesic equation with respect to f' says that for k = 1, ... , n,
d2 '/Jk -k d'/Ji d'/Jj
(^0) = dCl2 + L rij dCl dCl
o::;;i,j::;;n
d2 {Jk k d{Ji d{Jj -k d{Ji d'/JO -k d'/JO d'/JO
= dCl 2 + L rij dCl dCl +^2 L rw dCl dCl + r^00 dCl dCl ·
l::;;i,j::;;n l::;;i::;;n
This is equivalent to
0 = (~)
2
d
2
"/ (r(Cl)) + "" r~. (~ d/i (r(Cl))) (~ d/j (r(Cl)))
2 dr^2 ~ iJ 2 dr 2 dr
1::;;i,j::;;n
- ~ (~~ (r(Cl))) +2 L Rf (~~~i (r(Cl))) (~)-~ (~)2\7kR,
I::;;i::;;n
which, after dividing by r = Cl^2 / 4, implies
d21k d1i d1j 1 ( d1k )
o = dr2 (r(Cl)) + L rrj dr (r(Cl)) dr (r(Cl)) + 2r dr (r(Cl))
l::;;i,j::;;n - 2 ~ ~ Ri kdli( - r(Cl)) - -\7^1 k R.
1::;;i::;;n dr 2
That is, in invariant notation and with X ~ ~, we have
1 1
\7xX--
2
\7R+2Rc(X) +-X = 0,
2r
which is the same as (7.32). Thus £-geodesics correspond to geodesics de-
fined with respect to the space-time connection. In particular, I (r) is an
£-geodesic if and only if (3 (Cl) ~ I ( Cl^2 / 4) is a geodesic with respect to the
space-time connection '\7. Since f'~b = limN-+oo Nf'~b' we also conclude that
the Riemannian geodesic equation for the metric hon Nn x (0, T) (defined
in Exercise 7.4) limits to the Cl = 2y'T reparametrization of the £-geodesic
equation as N ----+ oo.
EXERCISE 7.23 (Motivation for change of time variable). Show that if