- FIRST VARIATION OF C-LENGTH AND EXISTENCE OF C-GEODESICS 303
{3° - (0) = 0 and d~o dri" (er) =f. 0 for er > 0, then {3° - (er) = Aer^2 for some positive
constant A.
SOLUTION TO EXERCISE 7.23. If p^0 (er)= 7 (er)' then the time compo-
nent of the geodesic equation with respect to '\7 is
d2 po """" (-o -) dpi dPJ
0 = der2 + ~ rij 0 f3 -d -d
O< _i,J_n .. < er er
d
2
7 1 (d7)
2
= der^2 - 27 der
since I'?j = 0 when i 2: 1 or j 2: 1, and rgo
7 (er) > 0 and ~:(er) > 0 for er> 0, we have
- 2 ~. Hence, assuming
so that
d d7 B dr d
-log-= du =du= -logy'T
der der ~: 27 der '
d7 = Cy!T
der
for some constant C > 0. Since 7 (O).= 0, we conclude
er2
7 (er)= C^2 4.
3.4. Existence of £-geodesics. Our next order of business is to estab-
lish the existence of solutions to the initial-value problem for the £-geodesic
equation. In this subsection (Mn, g ( 7)) , 7 E [O, T] , is a complete solution to
the backward Ricci fl.ow with curvature bound max {IRml, !Rel} S Co < oo
on M x [O, T]. We shall use the following
LEMMA 7.24 (Estimate for speed of £-geodesics). Let (Mn,g(7)), 7 E
[O, T], be a solution to the backward Ricci flow with bounded sectional cur-
vature. There exists a constant C ( n) < oo depending only on n such that
given 0 S 71 S 72 < T, if/ : h, 72] -+ M is an £-geodesic with
lim y'Tdd/ (7) =VE T'Y(ri)M,
r-->r1 7
then for any 7 E [Ti, 72],
7 I d1 (7)12 S e6GoT IVl2 +. C(n)T -1 (e6CoT - 1)'
d7 g(r) mm {T-72, C 0 }
where Co is as in (7.27) and IVl^2 ~ IVl!(ri) ·
PROOF. Let eri ~ 2..Jii. Define f3: [er1,er2]-+ M by f3(er) = 1(er^2 /4),
so that
(7.43) lim df3 = 1Vl^2.
I 1
2
u-->u1 der g( u2 I 4 )