332 7. THE REDUCED DISTANCE
since IY (7)1^2 = :¥ IY (r)l^2. Hence by (7.70),
(Hess(q,·r) L) (Y (r), Y (r))
:S~IY(r)l2 foT vr(1+T~7)Rd7+ IY,12
<: * ( 1 + T ~ f) IY (7)1
2
[VT ( R +I:~ I') dT + IY 'I'
= [ ( ~ + ~n!;) f (q,T) + ~ J IY(r)l
2
.
We have proved (compare with Lemma 7.41)
LEMMA 7.63. Let (Mn, g (7)), 7 E [O, T), be a solution to the backward
Ricci flow with bounded nonnegative curvature operator. We have for any
r E (0, T),
Recall that Hamilton's trace Harnack estimate says that
H ( X) ( 7) :::: - ( ~ + T ~
7
) R ( / ( 7) , 7).
Hence K (r, r) defined in (7.75) satisfies
K (r, r) :::: - fo:r 73 /^2 ( ~ + T ~
7
) R (r ( 7), 7) d7
'1T T ( Id 1
2
:::: - (^7) )
(^1) / (^2) ~ R (r ( 7) , 7) + di d7
0 T 7 7 g(T)
T ,
::::--T _L(r(r),r).
-7
Therefore, from (7.89); we have at (q, r)
2 1 T f
l\7RI :S -R + 73/2 T - TL (r (r) 'r) + f
:S -R + i (1 + T2~ r) f.
In particular,
LEMMA 7.64. Let (Mn,g(7)), 7 E [O,T), be a solution to the backward
Ricci flow with bounded nonnegative curvature operator. If r E (0, (1 - c) T)
for some c E (0, 1), then for any q EM