404 8. APPLICATIONS OF THE REDUCED DISTANCE
along ')'V, and hence we can use (7.48) to get^4
Iv (7)12 g*(T) < -:--e6(n-l)ec-1/2 + 12 (n ~c - 1) 2 (e6(n-l)e - 1).
Therefore by Holder's inequality,
(t ltv {T)lg,(r) dT)
2
:::; foT' T-l/^2 dT foT' VT li'V (T)l~*(T) dT
:::; 2vfcr 1
71
T-l/^2 JV (T)J~*(T) dT
< ( 2 vfcr)2 (e6(n-l)ec-1/2 + C~c (e6(n-l)e - l)).
- 12(n-1)^2
r2
<-. - 16
We get the last inequality by choosing c1 :::;! such that
4 (e6(n-l)et1/2 + c~.S-
2
(e6(n-l)e _ l)) < _!__
12(n-1)^2 -15
for all t E [O, c1]. Hence
If we also require ci :::; 6 ~, then T^1 :::; cr^2 :::; ~:. Since J Rmg* ( x, T) J :::; r\
for all x E Bg(o)(P,r) and TE [O,r^2 ], we have g(x,T) 2::: ~g(x,O) for
TE [0,T'] and x E Bg(o)(P,r). Hence
dg(O) ('yv (T') ,p) :::; foT' li'v (T)lg(O) dT:::; ~ foT' li'v (T)lg(T) dT
3r r
<-<-. - 8 2
This contradicts /'V ( T^1 ) E 8Bg (O) (p, r /2). The lemma is proved. 0
We now give a proof of Proposition 8.28.
(^4) Note that (3 (£T) =i= 1'V (£T (^2) /4) satisfies ~~ = V. In (7.48) we take Co= nr-; (^1) , T = cr (^2) ,
and C2 = ~~.