1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. PERELMAN'S FORMALISM IN POTENTIALLY INFINITE DIMENSIONS 419

    • 1
      \laJJj = \laiaj -IIijl/ = \laiaj - ( N)_ 112 Rijl/·
      R+ 2T
      By the Gauss equations, we have
      (R(ai, aj)ak, ae)
      = (R(ai,aj)ak,ae) - (n(ai,ae),n(aj,ak)) + (n(aj,ae),n(ai,ak))
      1
      = (R(ai, aj)ak, 8e) - ( N) (Ri£Rjk - Rj£Rik).
      R+ 2T
      By Koszul's formula for the Levi-Civita connection of g, i.e.,
      2 (V x Y, Z) = X (Y, Z) + Y (X, Z) - Z (X, Y)





  • ([X, Y], Z) - ([X, Z], Y) - ([Y, Z], X),


where the inner products are with respect tog, we have


  • 1
    (8.58) \1 aiv = N l/ 2 Re (8i),
    (R + 27)
    ~ 1
    (8.59) \1 vv = - ( N) \1 R.
    2 R+ 2T


To derive the two formulas above, we used (Vaiv, v) = 0, (Vvv, v) = 0, and

2(Vaiv,8k) = v(8i,8k) = ( R+ ~)-l/


2
87 gik,

(


  • ) \lkR
    \lvv,ak = -([v,ak],v) = ( N)
    2 R+ 2T
    (these follow from Koszul's formula and (8.57)).
    Applying another covariant derivative to (8.58) and (8.59), we have


(




    • ) 1 1
      \1 0 .\lvv,aj = 2 \liR\ljR- ( N)\li\ljR,
      i 2(R+~) 2 R+2T



  • (Vv fj aiv, 8j) = l N 2 (aTR -
    2


N 2 ) Rij + l N (~eRej - 8TRij),
2 ( R + 2T) T R + 2T


  • (V[a· v]v, 8j) = - l 2 \liR\ljR,


'' 4(R+ ~)

where, to obtain the second formula, we used


(Var (Rc(ai)) ,aj) = aT~j - (Rc(8i) 'Varaj)

= 8TRij - Ri£R£j,


(note that (Varaj,ak) = ~8 7 (8j,8k) = Rjk), and the third formula follows
from (8.57) and (8.59).
Hence the curvatures in the normal direction are given by

Free download pdf