1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
424 8. APPLICATIONS OF THE REDUCED DISTANCE

Rc(8T) Ba)= gk£ ( R(O-,., 8k)8e, ea)+ ( R(8r, v)v, ea)

+ ~g^111 ( R(8r, e 1 )e11, Ba)
=0,

Rc(Ba, B11) = gk£ ( R(Ba, 8k)8e, e/1) + ( R(Ba, v)v, e/1)



  • ~g^18 ( R(Ba, B1)e,,, e11)



  • 1 (a R-2R2)

  • 2 (R+~)2 r N 9a(1


= 0 mod O(N-^1 ).


Hence all of the components of the Ricci tensor are equal to zero (modulo
N-1).


Finally, taking the trace again yields the scalar curvature of g:

R = 9°^0 Roo + gij Rij + -gaf1 Ra/1


1 (^2 R


2
= 2 -R8rR+l\7RI --) - (^1 N) ( D.R+-R).
2 (R + ~) T 2 R + 27 T

5.3. Geometric interpretation of Perelman's entropy integrand.

Let (Mn,g (r)) be a solution to the backward Ricci fl.ow and let f satisfy

(6.15). In §6 of [297] Perelman also gave a geometric interpretation of the
integrand (6.20), i.e.,


r ( 21:::..f - IV fl


2
+ R) + f - n,

of his entropy W (g, f, r). In this subsection we discuss this interpretation.

Define the diffeomorphism

0 = (/; f,N : M ---+ M


by


'Pt,N '. (x, y, r) f-+ ( x, y, ( 1-~) r).


Clearly, limN--+oo 'Pt,N = idM, i.e., for N large, 'Pt,N is close to the identity.
Consider the pulled-back metric


gm~ ((/JJ,N)* g,

which we think of as a perturbation of the metric g. By definition,


gm ( X, y) = g ( ( lp f,N) X, ( lp f,N) y) ·


We first compute the components of the metric -gm.

Free download pdf