1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. PERELMAN'S FORMALISM IN POTENTIALLY INFINITE DIMENSIONS 425


LEMMA 8.41.

(1) 900 -m = 900 - - 2of - - -f +^0 (N-1)
OT T
= N + R - 2 ° f - L + 0 (N-^1 ) '
2T OT T

( 2) giQ = - z:i + 0 ( N-1) '


(3) gfj = gij + 0 (N-^1 ) = 9ij + 0 (N-^1 ),


(4) g~(3 = ( 1 - ~) !Jcx(3,


(5) g: = 0,


(6) g~ = o,

where ; 7 9ij = 2Rij·


PROOF. Let 7 = 7 (x, T) ~ ( 1-~) T. In the formulas below, 0 denotes


the time index; i, j, k, ... denote indices on M; a, /3, '"'(, ... denote indices on
SN; and a, b, c, ... denote arbitrary indices. The pulled-back metric is given
by


g1;J (x, y, T) = ~~: (x, y, T) ~~: (x, y, T) !Jed (0 (x, y, T)),


where z = x, y, or T. Using the formulas for !Jij, !Jcxf3, !Joo, and !Jicx = !Jio =
!Jcxo = 0, we obtain the following.


(1)

g 00 (x,y,T) = (


0
!

0
(x,y,T))

2
!Joo('P(x,y,T))

(


0-)2


=
0

~ !Joo (x, y, f)

= (l-2f _ 2Tof)


2
(N (l-2f)-l +R)
N NOT 2T N

( (


2f 2T Of) -2 )
= 1+2 -N - NOT + 0 (N )

x (R+~ (l+~)+o(N-^1 ))

=R+-N ( 1+-2f) +-2 N ( -----2f 2T of) +O(N -1 )
2T N 2T N NOT
N f of -1
=R+----2-+0(N )
2T T OT

= 900 - (. x' y' T ) - - -f 2-;:,;-^0 f + 0 ( N -1).
T UT
Free download pdf