1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

  1. PERELMAN'S FORMALISM IN POTENTIALLY INFINITE DIMENSIONS 427


(6)

by

g~ = ~:~ (x, y, T) °:rd (x, y, T) 9cd (cp (x, y, T))


tr^0
= ~ (x,y,T)§ao(x,y,7)

=0.

Now define the 1-parameter family of diffeomorphisms

'l/Jr:M-+M

0
OT '!/Jr= (\7 f)('l/Jr(x), T).
Consider the diffeomorphism

defined by


and the diffeomorphism


defined by


Let


g m __,_ --;--{l!*-m g '

which is a Riemannian metric on M.

We compute the components of the metric gm. First note that

2'!/J; (Hess 9 J) = 'l/J; (.Cgrad g tg) = £.1.*( 'P-r gradg f ) ('lj;;g)


= .Cgrad'ef;;.g(fow) ('lj;;g)
= 2Hess1/Jig (f o '1!).

D

LEMMA 8.42. Let (Mn, g ( T)) be a solution of the backward Ricci flow
and let f satisfy ( 6.15)

of= ~f-l\7fl^2 + R-~.
OT 2T
The (spatial) components gYJ satisfy the following:

!gYJ = ('1j;;(2Rc(g) + 2\7\lf))ij mod O(N~^1 )


= 2Rc(gmlMx{y}x{r})ij + 2\7i\7jf o '1! mod O(N-^1 ),

Free download pdf