1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

Bibliography


[1] Alexander, J.W. On the subdivision of 3-space by a polyhedron. Proc. Nat. Acad.
Seci, USA, 10, 6-8, 1924.
[2] Alvarez, E.; Kubyshin, Y. Is the string coupling constant invariant under T-duality?
hep-th/9610032.
[3] Anderson, Greg; Chow, Bennett, A pinching estimate for solutions of the linearized
Ricci flow system on 3-manifolds. Calculus of Variations 23 (2005), no. 1, 1-12.
[4] Anderson, Michael T. Degeneration of metrics with bounded curvature and applica-
tions to critical metrics of Riemannian functionals. In Differential geometry: Rie-
mannian geometry (Los Angeles, CA, 1990), 53-79, Proc. Sympos. Pure Math., 54,
Part 3, Amer. Math. Soc., Providence, RI, 1993.
[5] Anderson, Michael T. Geometrization of 3-manifolds via the Ricci flow. Notices
Amer. Math. Soc. 51 (2004), no. 2, 184-193.
[6] Anderson, Michael T.; Cheeger, Jeff. C"'-compactness for manifolds with Ricci cur-
vature and injectivity radius bounded below. J. Differential Geom. 35 (1992), no. 2,
265-281.
[7] Angenent, Sigurd B.; Knopf, Dan. An example of neckpinching for Ricci flow on
3n+l. Math. Res. Lett. 11 (2004), no. 4, 493-518.
[8] Angenent, Sigurd B.; Knopf, Dan. Precise asymptotics for the Ricci flow neckpinch.
arXiv:math.DG/0511247.
[9] Angenent, Sigurd B.; Velazquez, J. J. L. Degenerate neckpinches in mean curvature
flow. J. Reine Angew. Math. 482 (1997), 15-66.
[10] Apostol, Tom M. Calculus. Vol. I: One-variable calculus, with an introduction to
linear algebra. Second edition, Blaisdell Publishing Co., Ginn and Co., Waltham,
Mass.-Toronto, Ont.-London, 1967.
[11] Aubin, Thierry. Equations du type Monge-Ampere sur les varietes kahleriennes com-
pactes. C. R. Acad. Sci. Paris Ser. A-B 283 (1976), no. 3, Aiii, A119-Al21.
[12] Aubin, Thierry. Equations du type Monge-Ampere sur les varietes kahleriennes com-
pactes. Bull. Sci. Math. (2) 102 (1978), no. 1, 63-95.
[13] Aubin, Thierry. Nonlinear analysis on manifolds. Monge-Ampere equations.
Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York,
1982.
[14] Aubin, Thierry. Reduction du cas positif de l'equation de Monge-Ampere sur les
varietes Kahleriennes compactes a la demonstration d'une inegalite. J. Funct. Anal.
57 (1984), 143-153.
[15] Baird, Paul; Danielo, Laurent. Three-dimensional Ricci solitons which project to
surfaces. Preprint.
[16] Bakry, D. Diffusion on compact Riemannian manifolds and logarithmic Sobolev in-
equalities, J. Funct. Anal. 42 (1981) 102-109.
[17] Bakry, D.; Concordet, D.; Ledoux, M. Optimal heat kernel bounds under logarithmic
Sobolev inequalities. ESAIM Probab. Statist. 1 (1995/97), 391-407 (electronic).


513
Free download pdf