48 1. RICCI SOLITONS
LEMMA 1.79. The scalar curvature o{t>g and ttg are given by
b R = R-q.6.logA-q (q: l) IVlogAl^2 ,
ttR=R+q.6.logA-q(q:l) IVlogAl^2.
EXERCISE 1.80. Show that if A~ exp ( -~f) (i.e., log A= -~f), then
b 1
Rij = Rij + ViVjf--VdVjf,
q
b R = R + 2.6.f - q +
1
. q IV f^12 '.
tt R = R - 2.6.f - q +
1
IV f 12.
q
Hence
q-->oo lim Rb = R + 2.6.f - IV fl^2 ,
lim b Rij = Rij + ViVjf
q-->oo.
are Perelman's modified Ricci tensor and scalar curvature (see also (5.18)
and (5.19)).
As a consequence of the above exercise, if h has unit volume, we then
have
JMxP R (bg) dμo 9 =JM ( R+ 2.6.f - q;
1
1Vfl
2
) e-f dμ 9
=JM ( R+ q~
1
1Vf1
2
) e-fdμ 9.
Taking q---+ oo, this limits to :F (g, f) defined in (1.68).
9.2. Buscher duality. For a warped product solution of the modified
Ricci flow of the above type we have the following.
THEOREM 1.81 (Buscher duality). If
b g (t) = g (t) +exp(-~ f (t)) t dy°' ® dy°',
q a=l
t E I, satisfy the modified Ricci flow
(1.81) it^0 9ab = -2 (^0 Rab+ 2 °V a^0 Vb^0 ¢) ,
where b ¢ is a function on M x I, then the dual metrics
Hg (t) = g (t) +exp Gi (t)) t, dy" 0 dy"