1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1
66 2. KAHLER-RICCI FLOW

to be
K (Z W)::::: Rm (X, JX, JU, U) = Rmic (Z, Z, W, W)
ic ' · 1x1^2 1u1^2 1z1^2 1w1^2
Clearly we have Kie (Z, Z) =Kc (Z). We say that the bisectional curvature

is positive (respectively, nonnegative) if Kie (Z, W) > 0 (respectively,

Kc (Z, W) 2:: 0) for all Z, WE T^1 ,o M ~ { o}. Clearly positive (respectively,
nonnegative) bisectional sectional curvature implies positive (respectively,
nonnegative) holomorphic sectional curvature. We also have the following
(see Proposition 1 on p. 32 of [270] for example).

LEMMA 2.16. Po.sitive (respectively, nonnegative) Riemannian sectional
curvature implies positive (respectively, nonnegative) bisectional sectional
curvature.

Similarly to the notation for the components of the complex Riemann
curvature tensor, we define

\1 a.Rf3'?o'f/ ~ ( ('\7 ic) a~o: Rm IC) ( 8~f3' 8~'Y' 3~0' 8~'f/).


The second Bianchi identity says that

(2.9)
since

(\7 ~ a Rmic)(~ 8#'~'~'~ ~~~)+('Va ~ Rmic)(~ 8~'8#'~'~ ~ ~ ~)


+ ( \7 ~ Rm ic) ( 8~-r' 3~a.' 8~5' 8~'f/) =^0


(i.e., \7 a.Rf3'?Mi + \7f3R;ya.or;+\7 1 Ra.f3or; = 0, where \7 1 Ra.f3or; = 0). Taking the
trace, we have


(2.10)

Note that \7 a.Rf3'? = o~"' Rf3'? - r~f3R 01.
The volume form is dμg ~ ~! wn, where wn ~ w A · · · A w ( n times) and

n =dime J\11, which in local coordinates is

wn = n! (A) n det(9a.,B)dz^1 A dz^1 A · · · A dzn A dzn.


The volume is


(2.11) Vol (M) = Volg (M) = ~ f wn.


n.JM


The total scalar curvature may be written as


(2.12) { Rdμ--.:. ( 1 )1 { p/\wn-1.
JM n-l .JM
Free download pdf