1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. ALMOST /<;-SOLUTIONS i35


STEP 2. We shall prove the following.
Claim 2. For To (w) defined by (20.20) below, we have

ti '.S-To(w).


When ti ::::; -1, Claim 2 is true since To ( w) < 1.


When ti > -1, we will prove Claim 2 by contradiction. If Claim 2 is not


true, i.e., if ltil ::::; To (w), then there exists Yo E B 9 (o) (xo, ~) and t2 E [ti, OJ
such that


(20.18)

and
9 19
40


:S dg(t) (yo,xo) :S
80

fort E [ti, t 2 ].


Applying Proposition 20.6(a) tog (t), t E [ti, OJ, we get


(20.19)

for y E Bg(t) (xo, i) and t E [ti, 0].


Now we apply Theorem 18.7(2) tog (t), t E [ti, t2], with the Ricci curva-

ture upper bound oni^4 Bg(t) (xo, fo)UBg(t) (yo, fo) c Bg(t) (xo, i) to estimate


dg(t) (yo, xo), where fo ::::; lo is to be chosen below. We get


~ dg(t)(Yo, xo) ~ -2 (n -1) (-
3

2

(c (5-nw) + B (


5
-nw)) fo +! ).
ut t - ti ro

Since -ti ::::; 1, we may choose fo = (t-~/


12
::::; lo to obtain

8

at dg(t) (yo, xo)


~ -2 (n - 1) ( C (~;~w) (t - ti)i/^2 + ( B (~;~w) + 80) (t - ti)-i/^2 ).


Integrating this inequality in time from ti to t2, we have


d 9 (tz) (yo, xo) - d 9 (t 1 ) (yo, xo)

~ -2 (n - 1) ( C (~;~w) ltil^312 + ( B (~~nw) + 160) ltili/^2 ) ,


where we used t2 - ti :S lti I·


Define

(20.20)

(^14) The Ricci curvature bound follows from (20.19).

Free download pdf