1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. EXISTENCE OF THE HEAT KERNEL ON A CLOSED MANIFOLD 237


From this we see that for F satisfying the above hypothesis and k 2:: 2,
we have

of 01; ( Fk) (x, y, t) = ( (of o'{; F) F*(k-I)) (x, y, t).


The derivatives of the series (23.55) absolutely converge locally uni-
formly.


LEMMA 23.23. Let K be any compact subset of any local coordinate sys-

tem (U, {xi}) and let T < oo. Given£, m E NU{O} and any N > ~+2£+m,


the series 00

'Lofor;i ((DxPN)*k)


k=l
converges absolutely and uniformly on JC x K x [O, T]. Hence
00

ofo;"GN = 'Lofor;i ((DxPN)*k)


k=l
exists and is continuous, where G N is defined in (23.55).
PROOF. Recall from (23.43) that

(23. 76) Ut !1£'7m v x (D x p N ) ( x' y' t) = tN-Il-2£-m 2 e _ d2(x,y) St G m,£ ( x' y' t) '


where Gm , e is a C^00 covariant k-tensor on M x. M x [O, oo. ). In particular,


limofV'~(DxPN) (x,y,t) = 0


t~O ..
provided 2£ + m < N - ~· Thus, by (23.75) we have

(23.77) ofo'{; ((DxPN)k) = (ofo1;DxPN) (DxPN)*(k-I).


Now (23.76) implies there exists Cm,£< oo such that

I ( ofo1;DxPN) (x, z, s)I ::::; Cm,£SN-7#;-^2 £-me-d


2
~:·")

on JC x K x [O, T]. Thus, from applying (23.69) to the RHS of (23.77), we see
that


lof 01; ( (DxPN )*k) I (x, y, t)


= I lat JM ( ofo1;DxPN) (x, z, s) (DxPN )*(k-l) (z, y, t - s) dμ (z) dsl


ck-I Vol (M)k-2 t(k-l)(N-7#;+1)-l


< ~~~~~~~~~----o--::-~-


  • (k - 2)! (N - ~ + l)k-^2


X llat JM Cm,£SN-7#;-2£-me_d2~:·") e-~] dμ(z)dsl


C ck-lt(k-l)(N-7#;+1)-ltN-7#;-2£-m+I dz(x,y)
< m,£ Vol (M)k-l e--st-.


  • (k - 2)! (N - ~ + l)k-^2 (N - ~ - 2£ - m + 1)

Free download pdf