1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1
242 23. HEAT KERNEL FOR STATIC METRICS

so that d~ /i = a~i. By the mean value theorem, we have
(23.91)
l; JN (ri (h), y, s, t) ds - l; JN (ri (0), y, s, t) ds it 8JN ( ) d


  • -a. x,y,s,t s
    h 0 ~
    rt (8JN 8JN )


=lo axi (ri (h*), y, s, t) - axi (x, y, s, t) ds


for some h* contained in the interval from 0 to h. Note that, in regards to

the integral on the RHS of (23.91), by (23.89) we have that for any c: > 0,


there exists 5 ( c:) > 0 such that


rt I aaJ~ (x', y, s, t) Ids< c:,
lt-o(i;) x

independent of x' E M. On the other hand, given 5 (c:) > 0, there exists


'Tl> 0 such that if lhl <'fl, then


'

aJN - aJN I c:
8

. (ri (h*) , y, s, t) - -
8


. (x, y, s, t) < -


~ ~ t
for s E [O, t - 5 (c:)] since we are away from the singularity of PN. We con-
clude from splitting the integral on the RHS of (23.91) as l; = l;-o(i;) + lLo(i;)

that if lhl <'fl, then


l; JN (ri (h) 'y, s, t) ds - l; JN (Ii (0) 'y, s, t) ds
h

rt aJN I



  • lo axi (x, y, s, t) ds < 3c:.


Taking the limit as h--+ O, we obtain (23.90). This completes the proof
of Lemma 23.26. 0

3.3. Second space derivatives of a convolution with the para-


metrix.
The second partial derivatives of a convolution with the parametrix PN

are given by the following (we obtain the same answer as (23.73) with m =


2).


LEMMA 23.27 (Second space derivatives of a convolution with the para-

metrix). Under the same hypotheses as Lemma 23.26, for x EU such that


B (x,~inj(g)) cU,


we have (PN * G) (x, y, t) is C^2 with respect to the space variable x and the


second space derivatives of PN * G are given by


(23.92)

a2 1t1 a2pN
a xi ·a xJ · (PN*G)(x,y,t) = o M a xi ·a xJ. (x,z,t-s)G(z,y,s)dμ(z)ds,
Free download pdf