1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. ASYMPTOTICS OF THE HEAT KERNEL FOR A STATIC METRIC 257


More generally, for x near y and t near 0, we have

(

f) ")(l H n 1 ( 4 )) logHN+~log(4Kt)
fJt + ux og N + 2 og Kt + t

_ - (2n - ~Rpq (y) xPxq) + k.Riiq (y) xPxq
4t

+ 2 ( R ~Y) + 112 (\7 rR) (y) Xr) + R ~Y) + ~ (\7 rR) (y) Xr

+o (r(:)') +o (r(x)') +O(t)


(23.131) = -!!'._ 2t + 2! R ( ) Y + Rpq (y) 4t xP xq + 3! (\7 r R) ( ) Y X r



  • O (r (:)') + 0 (r (xJ^2 ) + 0 (t)


Recall that for Euclidean space we have

r (4Kt)-n/2 e-1~~2 dx = K-n/2 r e-lxl2 dx = 1,
}~n }~n

by the change of variables x = x / .;4t. Differentiating this under the integral


sign, we see that


0 = r (-!!'._ + lxl:) (4Kt)-n/^2 e-


1
~~

2
dx.
}~n 2t 4t

Hence


1


lxl

2


  • ( 4 Kt )-n/2 e -~d 4t X = -. n
    ~n 4t 2
    Moreover, we also deduce from the same change of variables that
    (1)


(23.132)

and
(2)

(23.133) L. 0 c~I') (41rt)-•1^2 e-1¥.'rm: = 0 (t;i').


(3) If A= (Aj) is a symmetric n x n matrix, then


(23.134)

Indeed, after conjugating by a rotation, we may assume that Aei =
Aiei, i = 1, ... , n, where { ei, ... , en} is the standard basis of ffi.n.
Free download pdf