1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. SUPPLEMENTARY MATERIAL: ELEMENTARY TOOLS 259


in (23.36). Using (23.127) and (23.128), we then have near t = O that^13


JM rJ (log HN +~log (47rt)) Hd~ + 0 (t3/2)

=JM rJ (-d


2

~' y) + log¢o + ~~t + 0 (t^2 )) Hdμ + 0 (t^312 )


=JM rJ (-d


2
~' y) + 1

1
2 Rpq (y) xPxq +^0 (r (x)

(^3) )) Hdμ
+JM rJ (~R (y) + 0 (r (x))) tHdμ + 0 (t^312 )


= -~ + ~tR (y) + 0 (t^312 ).


In particular, by (23.130),

(


a A) (l H n 1 ( 4 )) logHN+~log(47rt)I
at + ux og N + 2 og 7rt + t
x=y


  • (t + :t) JM rJ (logHN +~log (47rt)) Hdμ


=--+-R(y)--n^1 1 ( --+-tR(y) n^1 ) --a ( -tR(y)^1 ) +O ( t^1 ;^2 )
2t 2 t 2 3 at 3

= -~R (y) + 0 (t^1!^2 ).


REMARK 23.35. In contrast, we shall see in §4 of the next chapter that,
by a result of Perelman, a corresponding quantity for the Ricci fl.ow is o (1).


PROBLEM 23.36. Calculate the asymptotics near t = 0 of - JM f Hdμ.


5. Supplementary material: Elementary tools


5.1. Expansion for the determinant of a square matrix.


Here we recall an elementary result used in the derivation of the first
four terms of (23.114).


LEMMA 23.37 (Expansion for the determinant). If a square matrix has
the expansion

(23.138)

(^13) Note that lim.,_,o x log x = 0.

Free download pdf