284 24. HEAT KERNEL FOR EVOLVING METRICS
and by (24.47) we obtain
:T (las Z; (r (s)) ds) = O (s^2 ),
it follows from (24.54) that
(24.55) °!
0
(r(s),y,T)=O(s^2 )
for s E [O, r 7 (x)]. Furthermore, similar to (24.50), we have
(24.56)
1 1
(f:lx/l/Jo) (r(s) ,y,T) =
6
R(y,T) + 2,R,(y,T)
i
+ rT (x) x; ("\7iR + 2 (divR)i + V'iR)(y, T) + O(s^2 ).
Using (24.55), (24.56), and
Q (r ( S) , T) = Q (y, T) + -(-) s Xi^2
rT X^7 \i' iQ (y, T) + Q ( S ) ,
we compute
Lx,T ('I/Jo) (r (s), y, T)
= ( °!
0
- !:lx,T'l/JO + Q'l/Jo) (r (s), y, T)
1 1 s x~.
= -6R (y, T) - 2 n (y, T) - rT (x) 6 (V'iR + 2 (d1vR)i + Y'iR) (y, T)
+Q(y,T)+-(-)xTV'iQ(y,T)+O(s) s i^2
rT X
= (-~R-tn+ Q) (y,T)
i
- rT (x) x; (V'iR + 2 (divR)i + V'iR - 6\i'iQ) (y, T) + O (s^2 ).
We conclude from (24.53) that
'l/J1 (x, y, T)
rr(x)
= -rT (x)-^1 lo Lx,T ('I/Jo) (r (s), y, T) ds + 0 (r 7 (x)^2 )
= r 7 (x)-^1 forr(x) ( (~R + tn-Q) (y, T) + 0 (s^2 )) ds
rrr(x) s xi
+ rT (x)-
1
lo rT (x) ; (V'iR + 2 (divR)i + V'iR-6\i'iQ) (y, T) ds
- 0 (rT (x)^2 ).
Thus we obtain the following.