1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1
288 24. HEAT KERNEL FOR EVOLVING METRICS

and

respectively. Summing the above two formulas yields the following expres-
sion for (24.66a):

w
1

= r;. (-fr+ ~x,T) (r;.) l\7 x,T1);ol


2

4r^2 4r 1);5



  • 1);1 +(-fr :a ~x,T) 1);o + 0 (r).


By (24.69), for (24.66b) we have

(24.70) W 2 = _ r;. + log1);o + 1);1 + 0 (r).


4r^2 T 1);o

Summing these two formulas yields

(24.71) W= -(-fr +~x,T) (r;.) +4log1);o _ l\7x,^7 1);ol


2

4T 1);5

+ 21);1 + ( 1r1);: ~X,T) 1);o + Q ( T).

On the other hand, we obtain from (24.68) and (24.49) that


  • ( :T + ~x,T) (r;.) + 4log1);o


(

=-2n+^2 3Rij-2Rij ) (y,r)x~x~..


+ (~~j + Rij) (y, r) x~xt + 0 (r 7 (x)^3 )


(24.72) = -2n + (~j - Rij) (y, r) x~xt + 0 (r 7 (x)^3 ).


We also have from (24.49) that


(24.73)
Free download pdf