294 24. HEAT KERNEL FOR EVOLVING METRICS
Claim. The series in (24.83) converges uniformly on 8M x [O, T] to a
continuous function and we may exchange the sum and integration:
(24.84)
1
T 1 8ii OO
= d(J -
8
- (xo, Ti z, ()) L Ak (z, ()) dμg(u) (z).
O 8M Vz,u k=l
The claim, (24.83), and summing (24.82) from k = 1 to oo imply
(24.85) ~
1
7
'I/Joo (xo, T) = 2b (xo, T) + 2 d(J^1 -£)-8H (xo, Ti z, ())'I/Joo (z, ()) dμg(u) (z),
0 8M UVz,u
i.e., 'ljJ 00 is a solution of (24.78). By (24.76) we conclude
(24.86)
1
7
U'¢= (x, T) = - d(J^1 -£)-8H (x, Ti z, ())'I/Joo (z, ()) dμg(u) (z)
0 8M UVz,u
is the desired solution to Lemma 24.31.
Now we prove the claim. First we rewrite the Ak. Fork= 1 we have
1
7
Ai (xo, T) = 2 d(J^1 -£)-8H (xo, Ti z, ())Ao (z, ()) dμg(u) (z)
0 8M UVz,u
= 2 r d(J { Mi (xo, Ti z, ()) b (z, ()) dμg(u) (z)'
lo laM
where
is defined by
(24.87)
8ii
Mi (xo, Ti z, ()) ~ 2-
8
- (xo, Ti z, ()).
Vz,u
By induction we can show that
(24.88) Ak (xo, T) = 2 r dO" { Mk (xo, Ti z, ()) b (z, ()) dμg(u) (z)'
lo laM
where the functions
Mk : 8.M. x 8M x JR~ -+ JR
are defined recursively by
(24.89)
1
Mk+l (xo, Ti z, ()) ~ 2 T1 -8ii
8
--(xo, Ti w, p) Mk (w, Pi z, ()) dμg(p) (w) dp
u 8M Vw,p