- HEAT KERNEL ON NONOOMPAOT MANIFOLDS 297
and
l
_a -_a I:::; VT-0'.
8vy,T 8vy,CT
REMARK 24.37. Also note that by (24.93c) we have for a E (!, 1) that
r dO' f IM1I (xo, T; z, O') dμg(O') (z) :::; CTl-a
Jo 1aM
is finite. This implies
IA1I (xo, T) :S CT^1 -a.
REMARK 24.38. Note that (24.93a) and (24.93b) follow directly from
Lemma 24.35.
(2) k 2:: 2. Recall that a E (!, 1). We estimate !Mk! by a type of
induction. Suppose we have for some k E N an estimate of the form
(24.94) IMkl (xo, T; z, O') :::; ck (T - O')-f3k d;'Yk (xo, z)
for some Ck < oo, where f3k < 1 and 'Yk :Sn - 2a. Note that by (24.93c),
for k = 1 we have (24.94) with C 1 = C#, /3 1 = a, and 'Yl = n - 2a.
Let Co E [1, oo) be such that
(24.95) C 01 g (T1) :S g (T2):::; Cog (T1)
for all T1, T2 E [O, T]. Recall also that for any a, /3 < 1,
1
T ( T - p )-a ( p-0' )-(3 d p-- ( T-0' )1-a-(311 (1 -p -)-a p --(3d-p
(}' 0
(24.96) = Ca,(3 (T-O')l-a-(3,
where
(24.97)
c --'---r (1 - a) r (1 - /3)
a,(3 .... r (2 - a - /3)
and r is the Gamma function. Thus, by applying (24.93c) and (24.94) to
(24.89), we obtain
IMk+l (xo, T; z, O')I
(24.98a)
(24.98b)
8H
(xo, T; w, p) !Mk! (w, p; z, O') dμ 9 (p) (w) dp
8vw,p
:S 2C#Ck 1
7
{ (T - p)-a d;n+^2 a (xo, w)
(}' JaM
x (p - O')-f3k d-;;'Yk (w, z) dμg(p)(w)dp
< - CC k C a, (3 k Q'Yk/2 O (T - O')l-a-f3k
x f d;n+^2 a (xo, w) d';'Yk (w, z) dμ 9 ( 7 ) (w),
JaM