1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. HEAT KERNEL ON NONCOMPACT MANIFOLDS 299


Now suppose

(24.102) 2a -1 < /k Sn - 2a.


Regarding the integral in (24.98b), since 8M = R1 U R2 U R3 and by
summing the estimates (24.99), (24.100), and (24.101), we have


(24.103) r d:;n+^2 a (xo, W) d:;"fk (w, z) dμg(T) (w) S cd;CX-"(k-l (xo, z)'
JaM

where C < oo is independent of k. Thus, assuming (24.94) and (24.102), we


have that (24.98b) implies


(24.104)


where


ck+i ~ cckca,f3k CJ'k^12 ,
-f3k+l ~ 1 - a - f3k,
-/k+l ~ 2a - rk -1.

Therefore there exists k EN such that for any 1 S k S k, we have


(24.105)

where either -f3rc ;:::: 0 or -1rc 2:: 1 - 2a, i.e., -/rc+i 2:: 0.


Case 1. There exists ko = k + 1 E N such that -/ko 2:: 0. Then by
(24.104) we have


IMko I (xo, T; z, O') SC (T - 0')-/3,


where f3 = f3ko+l and C = Cka+ 1 diam (g ( T) )-'Yko+^1. Substituting this in
(24.98b), we have


JMko+l (xo, T; z, O')J

where


SC 1T (T - p)-a (p - 0')-(3 dp r d:;n+^2 a (xo, w) dμg(T) (w)
~ JaM
< CC'r (1 - a) r (1 - (3) ( _ )l-a-/3


  • r (2 - a - (3) T O' '


C' ~ sup r d;n+^2 a (xo, w) dμg(T) ( w) < oo.


xoEaM laM


In general, we have for f E N U { 0}


(

')£ re (1 - a) r (1 - (3) £(1-a)-/3


IMko+e(xo,T;z,O')lsC c r(1+£(1-a)-f3)(T-O').

Free download pdf