354 26. BOUNDS FOR THE HEAT KERNEL FOR EVOLVING METRICS
The following says that, in an integral sense, the heat kernel decays
exponential quadratically fast in space; this result follows from Lemma 26.17
and Lemma 26.21.
LEMMA 26.23 (Heat kernel has average exponential quadratic decay).
Let (Mn, g ( r)), T E [O, T], be a complete noncompact evolving Riemannian
manifold and let H be the minimal positive fundamental solution to (26.4).
Suppose that g (0) is such that Rcg(O) 2:: -K. Then there exist constants
C = C (n, T, K, sup IRij I) < oo and D = D (T, sup IRij I) < oo such that
(26.61)
r 2 (d;(o)(x,y)) c
}AH (x,T;y,v)exp D(r-v) dμ 9 (^7 )(x):S ( ~)'
M Vol 9 (o) B 9 (o) y, - 4 -
(26.62)
{ 2 (d;(O) (x, y)) C
JM H (x,T;y,v)exp D(r-v) dμg(v) (y) :S ( ~).
Vol 9 (o) Bg(O) x, - 4 -
PROOF. As in the discussion following Theorem 24.40, let {Oi}~ 1 be an
exhaustion of M and let Hni (x, r; y, v) denote the corresponding Dirichlet
heat kernels. By Lemma 26.17, we have
c
Hni(x,r;y,v):SH(x,r;y,v):S ( )'
"'\TI vo g(O) B g(O) y, -2-~
so that
lo. H~i (x, r; y, v) dμg(T) (x)
i
:S c( ~) r Hni(x,r;y,v)dμg(T)(x)
Vol 9 (o) Bg(O) y, - 2 - lni
CeC1T
(26.63) < -------
- Vol 9 (o) Bg(O) (y, 7)
since fni Hnidμ 9 ( 7 ) :S JM H dμ 9 ( 7 ) :::; e^01 (^7 -v) :::; e^01 T by (26.37).
Now given y EM and v E [O, T), define Gi: Dix (0, T-v]-+ [O, oo) by
Gi (x, O') ==::. Hni (x, v + O'; y, v)
for i large enough. Define f : (0, oo) -+ (0, oo) by
.. f (O') =;=. CeC1T .1 Volg(O) Bg(O) ( y, 2 v0) '
so that