1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

372 26. BOUNDS FOR THE HEAT KERNEL FOR EVOLVING METRICS


deduce

:/ ~ ~ L (!,,,,, ( \O,~u + u (


8
ti' + 1vM)) d1}t

= -n 1°^1 ( 1/Jr-au + U-a1/Jr) dμdt


r _ 00 Er,t at at


+ "2.1° 1 uJ\71/JrJ^2 dμ dt
r -oo Er,t

+ "2.1° r 1/Jr (/}..u - ~u) dμ dt
r -oo }Er,t t

(26.113) = -J n + -n 1° 1 1/Jr ( /}..u - -au) dμdt.
r r -oo Er,t at

Note that, since 1/Jr = 0 on aEr,t, we have


so that

Therefore, from (26.113) we have, for almost every r, that

(26.114) _E_ dr (.!___) rn = _!!__ rn+ 1 jj 1/Jr (f}..u - au) at dμ dt.
Er

In the special case where u(x, t) is a solution to the heat equation, we have

d
-I=:O.
dr

Note that for any 5 > 0, the sequence of (incomplete) Riemannian


manifolds {(B(xo,5),x 0 ,i^2 g)}iEN converges as i--+ oo, in the C^00 pointed
Cheeger-Gromov sense, to (ffi.n, 0, gcan), where gcan denotes the standard
Euclidean metric. Moreover, from the scaling property

and the heat kernel asymptotics we can show that

lim I(r, xo, g) = u(xo, to).
r->0
Free download pdf