372 26. BOUNDS FOR THE HEAT KERNEL FOR EVOLVING METRICS
deduce:/ ~ ~ L (!,,,,, ( \O,~u + u (
8
ti' + 1vM)) d1}t= -n 1°^1 ( 1/Jr-au + U-a1/Jr) dμdt
r _ 00 Er,t at at
+ "2.1° 1 uJ\71/JrJ^2 dμ dt
r -oo Er,t+ "2.1° r 1/Jr (/}..u - ~u) dμ dt
r -oo }Er,t t(26.113) = -J n + -n 1° 1 1/Jr ( /}..u - -au) dμdt.
r r -oo Er,t atNote that, since 1/Jr = 0 on aEr,t, we have
so thatTherefore, from (26.113) we have, for almost every r, that(26.114) _E_ dr (.!___) rn = _!!__ rn+ 1 jj 1/Jr (f}..u - au) at dμ dt.
ErIn the special case where u(x, t) is a solution to the heat equation, we haved
-I=:O.
drNote that for any 5 > 0, the sequence of (incomplete) Riemannian
manifolds {(B(xo,5),x 0 ,i^2 g)}iEN converges as i--+ oo, in the C^00 pointed
Cheeger-Gromov sense, to (ffi.n, 0, gcan), where gcan denotes the standard
Euclidean metric. Moreover, from the scaling propertyand the heat kernel asymptotics we can show thatlim I(r, xo, g) = u(xo, to).
r->0