1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

466 I. ASYMPTOTIC CONES AND SHARAFUTDINOV RETRACTION


by t, taking the limit as t---+ oo, and applying part (i), we obtain


( a^2 + b^2 - 2ab cos ( d 00 ('r1, 12)))


112

:S ( a^2 + c^2 - 2accos ( d 00 ('r1, /3)))


112

+ ( c^2 + b^2 - 2cbcos ( doo (13, 12)) )1

12
.

We now show that

(I.9)

In the Euclidean plane, draw two adjacent triangles


L':>AOC and L':>COB

with side lengths L ( OA) =a, L ( OC) = c, L (OB) =band angles LAOC =


doo (11,/3) and LCOB = d 00 (13,/2). Then, by the law of cosines,


L(Ac) = (a^2 +c^2 -2accosdoo(/1,13))1


12

and

L (CB) = ( c^2 + b^2 - 2cb cos doo (13, 12) )1

12
.

Choosing c so that the points A, C, and B lie on one line, we have

Thus

( a^2 + b^2 - 2abcos ( d 00 ('r1,12)))


112

:SL(AC)+L(CB)


= L (AB)


= ( a^2 + b^2 - 2abcos ( d 00 ('r1, /3) + d 00 ('y3,12)))


112
.

COS ( doo (11 , /2)) 2:: COS ( doo ('r1 , /3) + doo (13 , /2))

and the triangle inequality (I.9) follows since d 00 (11,12) :::; 1r. D

The ideal boundary ( M ( oo) , d 00 ) of ( M, g) is defined to be the metric


space induced by (Ray M (p) , d 00 ) as given in ( G .3). In particular,


(I.10)

and /1 rv /2 if and only if d 00 ('r1,12) = 0. Note that d 00 ('r1,12) = 0 if and


only if

lim d(ti(t) ,/2 (t)) = O.


t---+oo t
Free download pdf