1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

506 BIBLIOGRAPHY


[60] Fabes E. B.; Garofalo, N. Mean value properties of solutions to parabolic·equations
with variable coefficients, Jour. Math. Anal. Appl. 121 (1987), 305-316.
[61] Friedman, Avner. Partial differential equations of parabolic type. Robert E. Krieger
Publishing Company, 1983, Malabar, Florida.
[62] Fukaya, Kenji. Hausdorff convergence of Riemannian manifolds and its applications.
Recent topics in differential and analytic geometry, 143-238, Adv. Stud. Pure Math.,
18-1, Academic Press, Boston, MA, 1990.
[63] Fukaya, Kenji. A boundary of the set of the Riemannian manifolds with bounded
curvatures and diameters. J. Differential Geom. 28 (1988), no. 1, 1-21.
[64] Fulks, W. A mean value theorem for the heat equation. Proc. Amer. Math. Soc.
17(i) (1966), 6-11.
[65] Gallot, S. Inegalites isoperimetriques, courbure de Ricci et invariants geometriques.
I, II. C.R. Acad. Sci. Paris Ser. I Math. 296 (1983), 333-336, 365-368.
[66] Gardner, R. J. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.) 39
(2002), no. 3, 355-405.
[67] Garfinkle, David; Isenberg, James. Numerical studies of the behavior of Ricci flow.
Geometric evolution equations, 103-114, Contemp. Math., 367, Amer. Math. Soc.,
Providence, RI, 2005.
[68] Garfinkle, David; Isenberg, James. The modelling of degenerate neck pinch singular-
ities in Ricci flow by Bryant solitons. J. Math. Phys. 49 (2008), no. 7, 073505, 10
pp.
[69] Garofalo, Nicola; Lanconelli, Ermanno. Wiener's criterion for parabolic equations
with variable coefficients and its consequences. Trans. Amer. Math. Soc. 308 (1988),
no. 2, 811-836.
[70] Garofalo, N.; Lanconelli, Ermanno. Asymptotic behavior of fundamental solutions
and potential theory of parabolic operators with variable coefficients. Math. Ann. 283
(1989), no. 2, 211-239.
[71] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second
order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin,
2001.
[72] Gilkey, Peter B. The spectral geometry of a Riemannian manifold. J. Di.ff. Geom. 10
(1975), 601-618.
[73] Gilkey, Peter B. Invariance theory, the heat equation, and the Atiyah-Singer in-
dex theorem. Second edition. Studies in Advanced Mathematics, CRC Press, Boca
Raton, FL, 1995.
[74] Greene, Robert E. A genealogy of noncompact manifolds of nonnegative curvature:
History and logic. Comparison geometry (Berkeley, CA, 1993-94), 99-134, Math.
Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997.
[75] Greene, Robert E.; Wu, Hung-Hsi. C^00 approximations of convex, subharmonic, and
plurisubharmonic functions. Ann. Sci. Ecole Norm. Sup. (4) 12 (1979), no. 1, 47-84.
[76] Grigor'yan, Alexander. Gaussian upper bounds for heat kernel on arbitrary mani-
folds, J. Differential Geom. 45 (1997), 33-52.
[77] Gromoll, Detlef; Meyer, Wolfgang. On complete open manifolds of positive curvature.
Ann. of Math. (2) 90 (1969), 75-90.
[78] Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces.
Based on the 1981 French original. With appendices by M. Katz, P. Pansu, and
S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathe-
matics, 152. Birkhauser Boston, Inc., Boston, MA, 1999.
[79] Gross, Leonard. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), no. 4,
1061-1083.
[80] Grove, Karsten. Metric differential geometry. Differential geometry (Lyngby, 1985),
171-227, Lecture Notes in Math., 1263, Springer, Berlin, 1987.
Free download pdf