34 17. ENTROPY, μ-INVARIANT, AND FINITE TIME SINGULARITIES
where
D*=-~-~+R
· at
and where (l\7f Rm) (X, Y, Z) =Rm (\7 J, X, Y, Z).
If g 8 g = v and fsJ =~'then
(17.106)
where the subscript (1, 4) denotes the components on which the inner prod-
uct is acting. As a special case, if Rc+\7\7 f::::::: 0, then ifs J 1Rml^2 e-f dμ =
-~ J (v, a) e-f dμ.
We summarize the above formulas. For a = 1, 2, define the 2-tensors
13(a), the functions /(a), and the functionals Fa (g, J) by
(17.107a)
(17.107b)
(17.107c)
(17.107d)
(17.107e)
(17.107f)
13(^1 ) = -2 (Rc+V'V'f),
13(^2 ) =-a,
1(^1 ) = -R - ~f,
1(2) = _! IRml2'
2
Fi(g,J) =JM (R+ IY'fl
2
) e-f dμ,
F2 (g, f) = 1JM1Rml^2 e-f dμ.
Given a functional g (g, J), let 6(f3(a) ,f'(a) )g (g, f) denote Js g (g (s), f ( s))
under g 8 g (s) = 13(a) and gj (s) =/(a)_ We have
(17.108)
and
(17.109)
6(/3<1J,/'(1J) (11Rml
2
e-f dμ)
= -1 div ( e-f'V 1Rm1^2 ) dμ + L (a, \7 J) e-f dμ
-IP* -l\7JRml^2 e-fdμ