46
(18.9)
(18.10)
- GEOMETRIC TOOLS AND POINT PICKING METHODS
(a) If dg(to) (xo, x1) 2: 2ro, then the time derivative of the distance
function has the lower bound
a
a I dg(t)(xo,x1) 2: -2(n-1) (~Kro +-2:_).
t t=to 3 ro
(b) If dg(to) (xo, x1) < 2ro, then
: I dg(t)(xo,x1) 2:-2(n-l)Kr 0.
t t=to
Clearly, in either case we have
(18.11) aa I dg(t)(xo, x1) 2: -2(n - 1) (Kro + _!_).
t t=to ro
PROOF. (1) We first observe that as a consequence of Corollary 18.2,
Lemma 18.4, and the fact that Z (to) is compact, there exists I E Z (to)
such that
(18.12) % I dg(t)(x,xo) 2:-lRcg(to) (1'(s),1'(s))ds.
t t=to 'Y
Since
so ~ dg(to) (x, xo) > ro
by assumption, we may choose
'
( ( s) = J :a if 0 ::; s ::; r^0 ,
l 1 if ro < s ::; so
in (18.4), so that
1
ro (n-1 s2 )
~g(to)dg(to)(xo,x) :S - 2 - - 2Rcg(to)b'(s),1'(s)) ds
o ro ro
We simplify this as
~g(to)dg(to) (xo, x)
1
80
- Rcg(to) (!' (s ), 1' (s) )ds.
ro
- ::; - 1
80
Rcg(to) (!' ( s), 1' ( s) )ds
- fora ( Rcg(to) ( 1' ( s), 1' ( s)) ( 1 - :; ) + n ~
1
) ds
:S - Rcg(to)(1'(s),1'(s))ds + (n -1) -Kro + -
1
80 (2 1)
o 3 ro
since Rcg(to) ::; (n - l)K along 1lro,ro] C Bg(to) (xo, ro).
Therefore, in the barrier sense, we have
~g(to)dg(to)(xo,x) :S - Jo (8° Rcg(to)(1'(s),1'(s))ds + (n -1) (2 1)
3
Kro + ro.