1547845440-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_III__Chow_

(jair2018) #1

  1. LOCALIZED NO LOCAL COLLAPSING THEOREM


such that

f(u) ~I

1 if u E (-oo, !e^1 -n],
0::; ¢/(u)::; 12exp (en+l + n) if u E (!e^1 -n, ~e^1 -n),
exp (e1-~-u) if u E [~el-n,el-n),
oo if u E [e^1 -n,oo).
For any A> 0 there exists C1 (n, A) < oo such that

(18.66) ¢~u) (¢'(u))

2


  • ¢"(u) 2: (2A + nen)<P'(u) - C1(n,A)¢(u)


for u E (-oo, e^1 -n), that is,


(18.67)

ituJ (¢'(u))^2 - ¢"(u) - (2A + nen)<P'(u)
¢(u) 2: -C1(n,A).

To see this, define


¢(u) (¢'(u))^2 - ¢"(u) - (2A + nen)<P'(u)


C3 (n) ~ uE[~el-n,%el-n] min ¢(u) < oo.


On the other hand, for u E rne^1 -n, e^1 -n) we have


(18.68)

ituJ (¢'(u))^2 - ¢"(u) - (2A + nen)<P'(u)


¢(u)


1 2 2A + nen



  • (el-n - u) (^4) (el-n - u) (^3) (el-n - u) 2'
    73
    For u E rnel-n, e^1 -n) the RHS of (18.68) is bounded from below by some


finite number -C 2 (n, A). Therefore (18.67) holds for u E (-oo, e^1 -n) with


-C1(n, A)~ min {-C2(n, A), C3 (n)}.
The next step is to apply the weak maximum principle to the function

h: M x [O, 1] --+ [-oo, oo] defined by


h(w, t) ~ ¢(dg(t)(xo, w) - (2t - l)A) · (L(w, 1-t) + 2n + 1),


where L(w, T) = 4T£ (w, T).


Claim. Define

Then
(1)

where x is as in (18.60).
(2)

for T ::;! and w E M.


H (t) ~ min h (w, t).


wEM

H (1) = h (x, 1) = 2n + 1,


L(w, T) 2: -2n

Free download pdf