- LOCALIZED NO LOCAL COLLAPSING THEOREM
Hence, for a minimal £-geodesic"( from (x,O) to (w,r), we have
L(w,r)=2v'T for vs(Rg('Y(s),s)+b'(s)i;(s))ds
2: 2y'T for Vs ( 2 (ln-s)) ds
- -2n if T < -2 !.
(3) This part follows directly from (2), which implies for w E M
- 1
L(w,
2
)+2n+l 2: 1.
75
(4) Let u = dg(t)(xo, w)-(2t-l)A, d = dg(t)(xo, w), and L = L (w, 1-t).
We compute
(18.70a) ah at (w, t) = </>'(u) (ad at - 2A ) (L -+ 2n + 1) + </>(u)at' aL
(18.70b) \Jh(w, t) = (L + 2n + 1)</>'(u)\Jd + <f>(u)\JL,
Ah(w, t) = (L + 2n + 1) <f>'(u)Ad + (L + 2n + 1) <f>"(u) JVdJ^2
+ 2 (V</>(u), VL) + </>(u)AL
(18.70c) = (L + 2n + 1) </>'(u)Ad + (L + 2n + 1) <f>"(u)
+ 2 (V</>(u), VL) + </>(u)AL.
Hence
( ~~ - Ah) (w, t) = </>(u) (:t - A) L - 2 (V</>(u), VL)
(18.71) + (L + 2n + 1) (-</>"(u) + </>'(u) ( ~~ - Ad-2A)).
Given t, at a minimum point y of h( ·, t) we have \Jh = 0. Hence, by
(18.70b), we have at (y, t)
</>(u)\JL = -(L + 2n + 1)</>'(u)\Jd
and hence
- (</>'(u))2
(V</>(u),VL) = -(L+2n+l) </>(u).
- (</>'(u))2
It now follows from (18.71) that
(~~-Ah) (y,t) = </>(u) (gt -A) L
(18.72) + (L + 2n + 1) ( -</>"(u) + ifuJ (</>'(u))
2
).
+ (~~ - Ad-2A) </>'(u)
Note that fort 2:! we have dg(t)(w, xo) 2: !el-n whenever </>'(u) f 0
at (w, t). From Bg(t)(xo, e^1 -n) C Bg(o)(xo, 1) for all t E [O, 1] and from