1547845447-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_IV__Chow_

(jair2018) #1

  1. THAT Q = 0 IMPLIES THE SOLUTION IS THE KING-ROSENAU SOLUTION 121


Second, by substituting (29.182) into the LHS of (29.170), we have that (where'
denotes a time derivative)

(29.184)

~~ = A'((x - xo)

2


  • (y - Yo)


2

)^2 + B' (x - x1)


2


  • E' (y - Y1)


2


  • F'xy + C'



  • 4Axb (x - xo) ((x - xo)^2 + (y - y 0 )^2 )

  • 4Ayb (y - Yo) ((x - xo)


2


  • (y - Yo)


2

)


  • 2B (x - x1) x~ - 2E (y - Y1) y~.


We rewrite this in a form analogous to (29.183):

(29.185)
av , 2 )2 2
at =A ((x - xo) + (y - Yo )


  • 4Axb (x - xo) ((x - x 0 )^2 + (y -y 0 )^2 )

  • 4Ayb (y - Yo) ((x - xo)^2 + (y - Yo)^2 )



  • B' (x - xo)^2 + E' (y - Yo)


2

+ F'xy
+ 2 (B' (xo - x1) - Bx~) (x - xo) + 2 (E' (Yo - Y1) - Ey~) (y - Yo)
+ B' (xo - x1)

2


  • E' (yo - Y1)


2


  • 2Bx~ (xo - x1) - 2Ey~ (Yo - Y1) + C'.


By (29.170) and by equating the coefficients in (29.183) and (29.185), we obtain

(29.186a)
(29.186b)
(29.186c)

(29.186d)

(29.186e)

(29.186f)

(29.186g)

(29.186h)

and


A' = 2A (B + E),
xb = -2Fyo + 4B (x1 - xo),
Yb = -2Fxo + 4E (Y1 - Yo),

B' = 16A (B (xo - x1)


2


  • E (Yo - Y1)


2

+ Fxoyo + c)
+2B(E-B)-F^2 ,

E' = 16A ( B (xo - x1)


2


  • E (Yo -y1)


2


  • Fxoyo + c)


+ 2E ( B - E) - F^2 ,
F' = -2F (B + E),
, B' 2EFy 1 - F^2 x 0

x 1 = B (xo - x1) - 2 (E - B) (xo - x1) - B ,


1 E' 2BFx1 - F

(^2) yo
y 1 = E (Yo - Y1) - 2 (B - E)(yo - Y1) - E ,
(29.187) C' = -B' (xo - x1)^2 - E' (Yo - Y1)^2 + 2Bx~ (xo - x1) + 2Ey~ (yo - Y1)



  • 2 (E - B) B (xo - x1)


2


  • 2 (B - E) E (Yo - Y1)


2


  • 2 (B + E) C



  • F^2 (x6 + Y5) + 4BFx1Yo + 4EFxoY1·

Free download pdf