1547845447-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_IV__Chow_

(jair2018) #1

xviii


CK
Conf
d+ d- d+ d_

dt' dt> dt' dt


d
dcH

dμfl
du or dA
Li, LiL, Lid

diam
div
JEn
JEn,
Er(x, t)
exp
F
r~j

9 (X, Y) = (X, Y)


9 (t)

900 or 900 (t)
GRS
h or II
H

Hv:J for VE 8.J


Hessf
id
Im
Inn (G)
int
inj
Isom
IVP
J

Jk (M,N)


KV

L

NOTATION AND SYMBOLS

vector space of conformal Killing vector fields
group of conformal diffeomorphisms
a Dini time derivative
distance
Gromov- Hausdorff distance
volume form
Euclidean volume form
volume form on boundary or hypersurface
Laplacian, Lichnerowicz Laplacian,
Hodge- de Rham Laplacian
diameter
divergence
]Rn with the flat Euclidean metric

Minkowski ( n + 1 )-space


heat ball of radius r based at (x, t)
exponential map
Perelman's energy functional
Christoffel symbols
metric or inner product
time-dependent metric, e.g., solution of
the Ricci flow
limit Riemannian metric or solution of Ricci flow
gradient Ricci soliton
second fundamental form
mean curvature
set of closed half-spaces H containing

:J c JRk with V E 8H


Hessian off (same as \7^2 f)
identity
imaginary part
inner automorphism group
interior
injectivity radius
group of isometries of a Riemannian manifold
initial-value problem
Jacobian of the exponential map
bundle of k-jets of maps
vector space of Killing vector fields
length
Free download pdf