364 BIBLIOGRAPHY
[290] Ni, Lei; Wallach, Nolan. On a classification of gradient shrinking solitons. Math. Res. Lett.
15 (2008), no. 5, 941-955.
[291] Ni, Lei; Wilking, Burkhard. In preparation.
[292] Ni, Lei; Wolfson, Jon. Positive complex sectional curvature, Ricci flow and the differential
sphere theorem. arXiv:0706.0332.
[293] Ni, Lei; Wu, Baoqiang. Complete manifolds with nonnegative curvature operator. Proc.
Amer. Math. Soc. 135 (2007), 3021 - 3028.
[294] Nishikawa, Seiki. Deformation of Riemannian metrics and manifolds with bounded curva-
ture ratios. Geometric measure theory and the calculus of variations (Arcata, CA, 1984),
343 -3 52 , Proc. Sympos. Pure Math., 44, Amer. Math. Soc., Providence, RI, 1986.
[295] Nishikawa, Seiki. On deformation of Riemannian metrics and manifolds with positive cur-
vature operator. Curvature and topology of Riemannian manifolds (Katata, 1985), 202-211,
Lecture Notes in Math., 1201 , Springer, Berlin, 1986.
[296] Nitta, Muneto. Conformal sigma models with anomalous dimensions and Ricci solitons.
Modern Phys. Lett. A 20 (2005), no. 8, 577-584.
[297] Oliynyk, T.; Suneeta, V.; Woolgar, E. A metric for gradient RG flow of the worldsheet
sigma model beyond first order. Physical Review D 76 (2007), 1 -7.
[298] O'Neill, Barrett. The fundamental equations of a submersion. Michigan Math. J. 13 (1966),
459 - 469.
[299] Osserman, Robert. The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (1978), 1182-
1238.
[300] Osserman, Robert. A survey of minimal surfaces. Second edition. Dover Publications, Inc.,
New York, 1986.
[301] Ota!, J.-P. Le theoreme d 'hyperbolisation pir les varietes fibrees de dimension 3. Asterisque
235, 1996.
[302] Otsu, Yukio; Shioya, Takashi. The Riemannian structure of Alexandrov spaces. J. Differen-
tial Geom. 39 (1994), no. 3, 629 - 658.
[303] Palais, Richard S. Foundations of global non-linear analysis. W. A. Benjamin, Inc., New
York-Amsterdam, 196 8.
[304] Park, Joon-Sik; Sakane, Yusuke. Invariant Einstein metrics on certain homogeneous spaces.
Tokyo J. Math. 20 (1997), no. 1, 51 - 61.
[305] Parker, Thomas; Taubes, Clifford Henry. On Witten's proof of the positive energy theorem.
Comm. Math. Phys. 84 (1982), no. 2, 223-238.
[306] Pattie, R. E. Diffusion from an instantaneous point source with a concentration-dependent
coefficient. Quart. J. Mech. Appl. Math. 12 (1959), 407-409.
[307] Perelman, Grisha. A. D. Aleksandrov spaces with curvatures bounded from below, II.
Preprint (1991).
[308] Perelman, Grisha. Proof of the soul conjecture of Cheeger and Gromoll. J. Differential Geom.
40 (1994), no. 1, 209-212.
[309] Perelman, Grisha. Elements of Morse theory in Alexandrov spaces. St. Petersburg Math. J.
5 (1994), 205-213.
[310] Perelman, Grisha. A complete Riemannian manifold of positive Ricci curvature with Eu-
clidean volume growth and nonunique asymptotic cone. Comparison geometry (Berkeley,
CA, 1993 -94), 165-166, Math. Sci. Res. Inst. Pub!., 30 , Cambridge Univ. Press, Cambridge,
1997.
[311] Perelman, Grisha. DC structure on Alexandrov space (preliminary version). http://www.
math. psu.ed u/ petrunin/ papers/ Cstructure. pdf.
[312] Perelman, Grisha. The entropy formula for the Ricci flow and its geometric applications.
arXiv:math.DG/02 11159.
[313] Perelman, Grisha. Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109.
[314] Perelman, Grisha. Finite extinction time for the solutions to the Ricci flow on certain three-
manifolds. arXiv:math.DG/0307245.
[315] Perelman, Grisha; Petrunin, Anton. Quasigeodesics and Gradient curves in Alexandrov
spaces. http://www.math.psu.edu/petrunin/papers/ qg_ams. pdf
[316] Peters, Stefan. Convergence of Riemannian manifolds. Compositio Math. 62 (1987), no. 1,
3-16.