1547845447-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_IV__Chow_

(jair2018) #1
368 BIBLIOGRAPHY

[398] Tam, Luen-Fai. Construction of an exhaustion function on complete manifolds. Preprint.
[399] Tao, Terence C. Perelman's proof of the Poincare conjecture: A nonlinear PDE perspective.
arXiv:math.DG /0610903.
[400] Taylor, Michael E. Partial differential equations. I. Basic theory. Applied Mathematical
Sciences, 115. Springer-Verlag, New York, 1996.
[401] Thurston, William P. The Geometry and Topology of Three-Manifolds. March 2002
electronic version 1.1 of the 1980 lecture notes distributed by Princeton University.
http://www.msri.org/publications/books/gt3m/
[402] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geom-
etry. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357- 381.
[403] Thurston, William P. Three-dimensional geometry and topology. Vol. 1. Edited by Silvio
Levy. Princeton Mathematical Series, 35. Princeton University Press, Princeton, NJ, 1997.
[404] Tian, Gang. Canonical metrics in Kahler geometry. Notes taken by Meike Akveld. Lectures
in Mathematics ETH Ziirich. Birkhii.user Verlag, Basel, 2000.
[405] Tian, Gang. On Kahler-Einstein metrics on certain Kahler manifolds with C 1 > 0. In-
vent. Math. 89 (1987), no. 2, 225-246.
[406] Tian, Gang. Kahler-Einstein metrics with positive scalar curvature. Invent. Math. 130
(1997), no. 1, 1- 37.
[407] Tian, Gang. Calabi 's conjecture for complex surfaces with positive first Chern class. In-
vent. Math. 101 (1990), no. 1, 101 - 172.
[408] Tian, Gang; Yau, Shing-Tung. Kahler-Einstein metrics on complex surfaces with C1 > 0.
Comm. Math. Phys. 112 (1987), no. 1, 175 - 203.
[409] Tian, Gang; Zhang, Zhou. Preprint.
[410] Tian, Gang; Zhu, Xiaohua. Uniqueness of Kahler-Ricci solitons on compact Kahler mani-
folds. C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), no. 11, 991 - 995.
[411] Tian, Gang; Zhu, Xiaohua. Uniqueness of Kahler-Ricci solitons. Acta Math. 184 (2000),
no. 2, 271 - 305.
[412] Tian, Gang; Zhu, Xiaohua. A new holomorphic invariant and uniqueness of Kaehler-Ricci
solitons. Comment. Math. Helv. 77 (2002), no. 2, 297 - 325.
[413] Todorov, Andrei N. Applications of the Kahler-Einstein-Calabi-Yau metric to moduli of K3
surfaces. Invent. Math. 61 (1980), no. 3, 251 - 265.
[414] Todorov, A. N. How many Kahler metrics has a K3 surface? Arithmetic and geometry,
Vol. II, 451- 463, Progr. Math., 36 , Birkhii.user Boston, Boston, MA, 1983.
[415] Topping, Peter. Lectures on the Ricci fl.ow. London Mathematical Society Lecture Note
Series (No. 325). Cambridge University Press, 2006.
[416] Topping, Peter. Diameter control under Ricci fl.ow. Comm. Anal. Geom. 13 (2005), 1039-
1055.
[417] Topping, Peter. Ricci fl.ow compactness via pseudolocality, and fiows with incomplete initial
metrics. Journal of the European Mathematical Society 12 (2010), 1429-1451.
[418] Topping, Peter. Remarks on Hamilton's compactness theorem for Ricci fl.ow. J. Reine
Angew. Math. 692 (2014), 173 - 191.
[419] Triebel , Hans. Interpolation theory, function spaces, differential operators. Second edition.
Johann Ambrosius Barth, Heidelberg, 1995.
[420] Trudinger, Neil S. On Harnack inequalites and their application to quailinear elliptic equa-
tions. Comm. on Pure and Applied Math. 20 (1967), 721 - 747.
[421] Tso, K a ising. On an Aleksandrov-Bakelman type maximum principle for second-order par-
abolic equations. Comm. Partial Diff. Equations 10 (1985), no. 5, 543-553.
[422] Varadhan, S. R. S. On the behavior of the fundamental solution of the heat equation with
variable coefficients. Comm. Pure Appl. Math. 20 (1967), 431 - 455.
[423] Varopoulos, N. Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63 (1985), 240-260.
[424] Vazquez, Juan Luis. The porous medium equation. Mathematical theory. Oxford University
Press, 2006.
[425] Villani, Cedric. Optimal transport, old and new. Grundlehren der mathematischen Wis-
senschaften, 338, Springer, Berlin, 2009.
[426] Waldhausen, Friedhelm. On irreducible 3-manifolds which are sufficiently large. Ann. of
Math. (2) 87 (1968), 56- 88.

Free download pdf