- VOLUME GROWTH OF SHRINKING GRADIENT R ICCI SOLITONS 23
together, we obtain the !-Bochner formula
(27.96)
1
2.6.1l'Vul^2 = l\7^2 u l^2 +('Vu, \7.6.1u) + Rc1(\7u, 'Vu).
Let 6 EM and let r(x) = d(x, O). Let S(O,r) ~ {x E M : d(x, O) = r} be
the distance sphere. Let H denote the mean curvature of S( 6 , r) , wherever it is a
smooth hypersurface. The f-mean curvature is
(27.97) H1 = H - (\i'f, \i'r) = .6.1r
since .6.r = H. Recall that since l'Vrl^2 = 1 and \7^2 r =II, (27.96) with u = r implies
the f-Riccati equation
(27.98) aH^1 (a a )^2 (a a ) H
2
- = -Rc1 - , - -IIII ~ -Rc1 - , - - --.
8r 8r 8r 8r 8r n-1
Let J denote the J acobian of the exponential map and let J f ~ e-f J denote the
!-Jacobian. We have tr lnJ =Hand tr lnJ1 =HJ. Thus
(27.99)
If Rct 2: -~g for some c: E IR, then
a r
2
H
2
( a a ) ( a
2
- (r^2 H) < 2r H - ---r^2 Re - - < n - 1 + r^2 - f + -c:).
8r - n - 1 8r ' 8r - 8r^2 2
Hence
(27.100) -a ( r^2 H t ) < n-1-2r-af + c: - r^2.
8r - 8r 2
Integrating this while using limr '\,O r^2 HJ (r) = 0, we obtain
(27.101)
H (r) - a -f (r) =Ht (r) ~ --n -^1 + - r c - -^2 1r -r-(a f r)dr- -.
8r r 6 r^2 0 8r
Now co nsider the case where c: = 0. Wherever we have the bound l\7 fl ~A,
(27.102)
n- 1
H t (r) ~ --+A.
r
By substituting this into (27.99), we have
Taking r 1 -+ 0 and calling r 2 = f , we obtain