28 27. NONCOMPACT GRADIENT RICCI SOLITONS
Therefore, by (27.125) we have
:tH(~(t)) :'.'.'. :tl(~(t)).
Under suitable growth conditions on the function ~' it can be shown that
limt--+oo ~ (t) = 0 and thus limt--+oo H (~ (t)) = 0. We conclude that if ~(t) satis-
fies (27.119), then
(27.128)
H (~(t)) :SI(~ (t)); that is, JM IV'~(t)l
2
eWl-f dμ :'.'.'.JM ~(t)ef.(t)-f dμ.
Given <p with JM e-'Pdμ = (4nt^12 , take ~(O) = f - <p. Then (27.128) at t = 0
implies that
JM (f - <p) e -cp dμ :S JM (IV' fl
2
+ IV'<pl
2
- 2 (\7 f , V'<p) )e-cp dμ
and
JM (IV'<pl
2
+ <p)e-'Pdμ :'.'.'. JM ( 2!~.f - IV' 11
2
+ f) e-'Pdμ.
We conclude from this and (27.118) that
(27.129)
JM (R + IV'<pl
2
+ <p - n)e-cpdμ :'.'.'. JM ( R + 26.f - IV' fl
2
+ f -n) e-cpdμ
= - (4nt^12 C1(9).
This finishes our sketch of the proof of Theorem 27.46.
In terms of w = e -cp/^2 , the logarithmic Sobolev inequality says that if JM w^2 dμ
= ( 4n t^12 , then
JM (Rw^2 + 4 IV'wl
2
- w
2
ln(w
2
))dμ :'.'.'. (n - C1(9)) JM w
2
dμ.
If we do not impose any constraint on w, then this is equivalent to
(27.130) JM w
2
ln(w
2
)dμ - ln (JM w
2
dμ) JM w
2
dμ :S JM (4 IV'wl
2
+ Rw
2
)dμ
- C2 (9) JM w
2
dμ,
where C2(9) = C 1 (9) - n - ln((4nt^12 ). Since R = ~ - 6.f, we obtain
(27.131)
JM w
2
ln(w
2
)dμ-ln (JM w
2
dμ) JM w
2
dμ :S JM (4 IV'wl
2
+('VJ, \7(w
2
)))dμ
+ C3(Q) JM w
2
dμ,
where C3(Q) = C 1 (Q) - ~ - ln((4nt^12 ).
REMARK 27.48. Compare the derivation of inequality (27.125) with Bakry and
Emery's proof of their logarithmic Sobolev inequality [16] (for an exposition, see
Proposition 5.40 in Part I).