1549055259-Ubiquitous_Quasidisk__The__Gehring_

(jair2018) #1
10.4. APOLLONIAN METRIC IN A QUASIDISK 145

PROOF. Set

Then
f'(u) = K(cu)K-^1 g(u)
where

Hence
g(u):::; g(l):::; 0, J'(u):::; 0, f(u):::; f(l) = 0
and, with (10.4.2),
v:::; f(u) + (2KcK-l - l)uK:::; (2KcK-l - l)uK:::; (2c)2(K-l)UK
for u ;::: 1. This implies (10.4.3) when u ;::: 1. The same argument with u-^1 in place
of u yields (10.4.3) when 0 < u :::; 1. 0

THEOREM 10.4.4. If f is a K -quasiconformal self-mapping of R
2
and if D is


  • 2
    a proper subdomain of R , then
    (10.4.5)
    for z1, z2 E D where
    (10.4.6) b(K) = 2(K - l)log32.
    PROOF. By performing preliminary Mobius transformations we may assume
    that D, D' C R^2. Fix z 1 , z 2 ED and choose w 1 , w 2 E 8D so that
    lf(z1) - f(wi)llf(z2) - f(w2)I
    af(D)(J(z1), f(z2)) =log lf(z1) - f(w2)llf(z2) - f(wi)I"


Then by Theorem 1.3.10,


where


Hence
v:::; 32 2 CK-l) max(uK, u-K),


whence
log v:::; Kl log ul + b(K) :::; KaD(z1, z2) + b(K)


by Lemma 10.4.1. Thus


af(D)(J(z1), f(z2)):::; KaD(z1, z2) + b(K).
0
COROLLARY 10.4.7. If D is a domain in R^2 and if there exists a K-quasi-
conformal self-mapping f of R^2 which maps D conformally onto a disk, then
(10.4.8) hD(z1, z2) :::; K aD(z1, z2) + b(K).
PROOF. By (3.3.8) and Theorem 10.4.4,
hD(z1, z2) ht(D)(J(z1), f(z2))
= af(D)(J(z1), f(z2)) :::; K aD(z1, z2) + b(K).
0
Free download pdf