168 BIBLIOGRAPHY
[156] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions. Annals Math. Studies 97 , Princeton Univ. Press, 1981.
[157] 0. Teichmiiller, Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh.
Preuss. Akad. Wiss. 22 (1940) 1-197.
[158] 0. Teichmiiller, Ein Verschiebungssatz der quasikonformen Abbildung. Deutsche Math. 7
(1944) 336-343.
[159] M. Tienari, Fortsetzung einer quasikonformen Abbildung iiber einen Jordanbogen. Ann.
Acad. Sci. Fenn. A I 321 (1962).
[160] P. Tukia, The planar Schonfiies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. 5 (1980)
49-72.
[161] P. Tukia, On two-dimensional quasiconformal groups. Ann. Acad. Sci. Fenn. 5 (1980) 73-78.
[162] P. Tukia, Extension of quasisymmetric and Lipschitz embeddings of the real line into the
plane. Ann. Acad. Sci. Fenn. 6 (1981) 89-94.
[163] J. Vii.isii.lii, On quasiconformal mappings of a ball. Ann. Acad. Sci. Fenn. 304 (1961) 3-7.
[164] J. Vii.isii.lii., Quasimobius maps. J. Anal. Math. 44 (1984/ 85) 218-234.
[165] M. F. Walker, Linearly locally connected sets and quasiconformal mappings. Ann. Acad.
Sci. Fenn. 11 (1986) 77-86.
[166] R. L. Wilder, Topology of manijolds. Colloquium Publications 32, Amer. Math. Soc., 1949.
[167] K-J. Wirths, Uber holomorphe Funktionen, die einer Wachstumsbeschriinkung unterliegen.
Arch. Math. 30 (1978) 606-612.
[168] S. Yang, QED domains and NED sets in Rn. Trans. Amer. Math. Soc. 334 (1992) 97-120.
[169] S. Yang, Extremal distance and quasiconformal reflection constants of domains in an. J.
Anal. Math. 62 (1994) 1-28.