8 1. PRELIMINARIES
i a+i
R
0 a
FIGURE 1.
for 0 < x < a. Thus
L 2 p(z)
2
dm 21a (
1
p(x + iy)
2
dy) dx 2 a
and
Next the function
is in adm(r) and
mod(r) =inf r p(z)^2 dm 2 a.
P }R 2
{
1 if z ER,
p(z) =
0 otherwise
r p(z)^2 dm =a,
}R 2
completing the proof for Lemma 1.3.1. D
LEMMA 1.3.2. If r is a family of curves and if for each t with a < t < b the
circle { z : I z I = t} contains a curve / E r , then
1 b
mod(I') 2 - log -.
27r a
PROOF. See Figure 1.3. If p E adm(r), then
1 :.::: (1 p(z) ldzlr :.::: (
2
7' p(t ei^6 ) t de)
2
:.::: 27rt 1
2
7' p(t ei^6 )^2 t de,
whence
-2^1 log~= {b_2l dt::; fb(f
2
7rp(tei^6 )^2 tde)dt::; r p(z)^2 dm.
7l" a J a 'lt"t J a JO JR 2
Now take the infimum over all such p. D
LEMMA 1.3.3. If r is a family of curves which join continua C 1 and C 2 where
diam( C 1 ) :.::; b,
then