1.3. MODULUS ESTIMATES 9
FIGURE 1.3
PROOF. Choose z1 E C1 and z2 E C2 so that iz1 - z2I = dist(C 1 , C2) and set
{
1 /a ifzEB(z1,a+b),
p(z) =
0 otherwise.
Then each 'YE r either joins C 1 to C 2 in B(z 1 , a+b) or joins 8B(z 1 , b) to 8B(z 1 , a+
b). In either case 'Y contains a subarc of length at least a which lies in B(z 1 , a+ b).
Thus p E adm(r) and
D
We now apply the modulus estimate established above in Lemma 1.3.2 to prove
an elementary distortion theorem for quasiconformal mappings which we will need
in what follows.
I
I
I
I I
'
' \
FIGURE 1.4
I
I
' \
\
\
\