1549055259-Ubiquitous_Quasidisk__The__Gehring_

(jair2018) #1
1.3. MODULUS ESTIMATES 9

FIGURE 1.3

PROOF. Choose z1 E C1 and z2 E C2 so that iz1 - z2I = dist(C 1 , C2) and set


{

1 /a ifzEB(z1,a+b),
p(z) =
0 otherwise.

Then each 'YE r either joins C 1 to C 2 in B(z 1 , a+b) or joins 8B(z 1 , b) to 8B(z 1 , a+
b). In either case 'Y contains a subarc of length at least a which lies in B(z 1 , a+ b).
Thus p E adm(r) and


D
We now apply the modulus estimate established above in Lemma 1.3.2 to prove
an elementary distortion theorem for quasiconformal mappings which we will need
in what follows.


I

I
I

I I
'
' \

FIGURE 1.4

I
I

' \
\
\
\
Free download pdf