v iii
5.3. Quasiconformal mappings
5.4. Bilipschitz mappingsCONTENTSChapter 6. Two-sided criteria
6.1. Linear local connectivity revisited
6.2. Hardy-Littlewood property
6.3. Lipa-extension domains
6.4. Harmonic doubling conditionChapter 7. Miscellaneous properties
7.1. Bloch functions
7 .2. Comparable Dirichlet integrals
7.3. Quasiconformal groups
7.4. Homogeneity
7.5. Family of all quasicircles
7.6. Quasiconformal equivalence of R3
\ D and B^3Part 2. Some proofs of these properties
Chapter 8. First series of implications
8.1. Quasidisks and hyperbolic segments
8.2. Hyperbolic segments and uniform domains
8.3. Uniform domains and linear local connectivity
8.4. Linear local connectivity and the three-point condition
8.5. The three-point condition and quadrilaterals
8.6. Quadrilateral inequality and quasidisks
8.7. Reflections and quasidisks
8.8. Quasiclisks and decomposabilityChapter 9. Second series of implications
9.1. Uniform domains and Schwarzian derivatives
9.2. Schwarzia n and pre-Schwarzian derivatives
9.3. Pre-Schwarzian derivatives and local connectivity
9.4. Uniform domains are rigid
9.5. Rigid domains are linearly locally connected
9.6. Uniform domains h ave the min-max property
9.7. Min-max property and local connectivityChapter 10. Third series of implications
10.1. Quasidisks and EMO-extension
10.2. EMO-extension and the hyperbolic metric
10 .3. Hyperbolic metric and hyperbolic segments
10 .4. Apollonian metric in a quasidisk
10 .5. Apollonian metric and hyperbolic segmentsChapter 11. Fourth series of implications
11.1. Harmonic bending and quasidisks
11.2. Quasidisks and quasiconformal extension domains
11.3. Homogeneity and quasidisks
11.4. Extremal distance domains73
7477
77
78
81
8387
87
89
90
90
93
949799
100
104
104
106
107
108
112
114117
118
121
123
127
132
134
135137
138
138
140
144
148149
150
153
153
158