98 H. HOFER, HOLOMORPHIC CURVES AND DYNAMICS
- I. Ekeland. Une theorie de Morse pour les systemes hamiltoniens convexes.
Ann. Inst. Henri Poincare, Analyse non lineaires, 1:19-78, 1984. - Y. Eliashberg. Classification of overtwisted contact structures on three mani-
folds. Inv. Math., pages 623-637, 1989. - Y. Eliashberg. Filling by holomorphic discs and its applications. London Math.
Society Lecture Notes, pages 45-67, 1991. Series 151. - Y. Eliashberg. Contact 3-manifolds, twenty year since J. Martinet's work. Ann.
Inst. Fourier, 42:165-192, 1992. - Y Eliashberg. Legendrian and transversal knots in tight contact manifolds. In
Topological methods in modern mathematics. Publish or Perish, 1993. - Y. Eliashberg. Classification of contact structures on IR^3. Inter. Math. Res.
Notices, 3:87-91, 1993. - Y. Eliashberg and H. Hofer. A Hamiltonian characterisation of the three-ball.
1993. to appear P. Hess Memorial Volume, Differential and Integral equations,
7: 1303-1324, 1994. - Y. Eliashberg, H. Hofer, and D. Salamon. Lagrangian intersections in contact
geometry. Geometric and Functional Analysis, 5(2):244-269, 1995. - Y. Eliashberg and L. Polterovich. Local lagrangian 2-knots are trivial. Annals
of Mathematics, 144:61- 76 , 1996. - A. Floer. A relative index for the symplectic action. Comm. Pure and Appl.
Math., 41:393-407, 1988. - A. Floer. Morse theory for Lagrangian intersection theory. J. Diff. Geom.,
28:513-54 7, 1988. - A. Floer. The unregularised gradient flow of the symplectic action. Comm.
Pure Appl. Math., 41:775-813, 1988. - A. Floer. Symplectic fixed points and holomorphic spheres. Comm. Math.
Physics, 120 :576-6 11 , 1989. - A. Floer. Witten's complex and infinite dimensional Morse theory. J. Diff.
Geom., 30:207-221, 1989. - A. Floer, Hofer H., and C. Viterbo. The Weinstein conjecture in P x C^1. Math.
Zeit., 203:355-378, 1989. - J. Franks. Geodesics on S^2 and periodic points of annulus homeomorphisms.
Invent. Math., 108:403-418, 1992. - F. Tukaya and K. Ono. Arnold conjecture and Gromov-Witten invariants for
general symplectic manifolds. preprint 1996. - N. Ghoussoub. Duality and perturbation methods in critical point theory. Cam-
bridge Tracts in Mathematics Vol. 107, 1993. - V. L. Ginzburg. An embedding s^2 n-l ___, IR^2 n, 2n - 1 ~ 7, whose Hamiltonian
flow has no periodic trajectories. Inter. Math. Research Notices, 2:83-97, 1995. - E. Giroux. Une structure de contact meme tendue est plus ou moins tordue.
Preprint 1992. - M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math.,
82:307-347, 1985. - M.R. Herman. Exemples de £lots Hamiltoniens dont aucune perturbation en
topologie C^00 n'a d'orbites periodiques sur un ouvert de surfaces d'energies.
Comptes-Rendus-de-l'Academie-des-Sciences. Serie-I.-Mathematique, 312 (No.
13) :989-994, 1991 - M. Herman. Private communication.