264 A. GIVENTAL, A TUTORIAL ON QUANTUM COHOMOLOGY
16. A. Givental & B. Kim. Quantum cohomology of flag manifolds and Toda
lattices. Commun. Math. Phys. 168 (1995), 609 - 641.
- M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. Invent.
Math. 82 (1985), 307 - 347. - B. Kim. On equivariant quantum cohomology. IMRN (1996), No. 17, 841 -
851. - B. Kim. Quantum cohomology of flag manifolds G / B and quantum Toda lat-
tices. Preprint, 1996. - B. Kim. Quantum Lefschetz principle. Preprint, 1997.
- M. Kontsevich. Enumeration of rational curves via toric actions. In "The
moduli space of curves", R. Dijkgraaf, C. Faber, G. van der Geer (Eds.),
Progr. in Math. 129 , Birkhiiuser, Boston, 1995 , 335 - 368. - B. Kostant. On Whittaker vectors and representation theory. Invent. Math.
48 (1978), 101 - 184. - J. Li & G. Tian. Virtual Moduli cycles and Gromov-Witten invariants in
general symplectic manifolds. Preprint, alg-geom/9608032. - Y. Ruan. Virtual neighborhoods and pseudo-holomorphic curves. Preprint,
1996, 83 pp. - M. Semenov-Tian-Shansky. Quantization of Toda lattices. In "Dynamical sys-
tems 7", V. Arnold, S. Novikov (Eds.), Encyclopaedia of Math. Sci. 16,
Springer-Verlag. - E. Witten. Supersymmetry and Morse theory. J. Diff. Geom. 117 (1982), 353
- E. Witten. Two-dimensional gravity and intersection theory on moduli space.
Surveys in Diff. Geom. 1 (1991), 243 - 310.