1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1

414 J. E. MARSDEN, MECHANICS, DYNAMICS, AND SYMMETRY



  1. Armero, F. and J.C. Simo [1993] A-Priori Stability Estimates and Uncondi-
    tionally Stable Product Formula Algorithms for Non-Linear Coupled Ther-
    moplasticity. Int. J of Plasticity, 9 , 149- 182.

  2. Armero, F. and J.C. Simo [1996] Long-Term Dissipativity of Time-Stepping
    Algorithms for an Abstract Evolution Equation with Applications to the In-
    compressible MHD and Navier-Stokes Equations. Comp. Meth. Appl. Mech.
    Eng. 131 , 41-90.

  3. Armero, F. and J.C. Simo [1996] Formulation of a new class of fraction-step
    methods for the incompressible MHD equations that retains the long-term
    dissipativity of the continuum dynamical system, Fields Institute Comm. 10 ,
    1-23.

  4. Arms, J .M., J .E. Marsden, and V. Moncrief [1981] Symmetry and bifurcations
    of momentum mappings, Comm. Math. Phys. 78 , 455-478.

  5. Arms, J.M., J.E. Marsden, and V. Moncrief [1982] The structure of the space
    solutions of Einstein's equations: II Several Killings fields and the Einstein-
    Yang-Mills equations, Ann. of Phys. 144 , 81 - 106.

  6. Arnold, V.I. [1966a] Sur la geometrie differentielle des groupes de Lie de
    dimenson infinie et ses applications a l'hydrodynamique des fluids parfaits.
    Ann. Inst. Fourier, Grenoble 16 , 319 - 361.

  7. Arnold, V.I. [1966b] On an a priori estimate in the theory of hydrodynamical
    stability. Izv. Vyssh. Uchebn. Zaved. Mat. Nauk 54 , 3- 5; English Translation:
    Amer. Math. Soc. Transl. 79 [1969], 267-269.

  8. Arnold, V.I. [1966c] Sur un principe variationnel pour les decoulements sta-
    tionaires des liquides parfaits et ses applications aux problemes de stabilite
    non lineaires. J. Mecanique 5 , 29 -43.

  9. Arnold, V. I. [1989] Mathematical Methods of Classical Mechanics. Second
    Edition Graduate Texts in Math 60 , Springer-Verlag.

  10. Arnold, V.I. and B. Khesin [1992] Topological methods in hydrodynamics.
    Ann. Rev. Fluid Mech. 24 , 145- 166.

  11. Arnold, V.I. and B. Khesin [1997] Topological m ethods in Fluid Dynamics.
    Appl. Math. Sciences, Springer-Verlag.

  12. Arnold, V.I., V.V. Kozlov, and A.I. Neishtadt [1988] Mathematical aspects
    of classical and celestial mechanics, in: Dynamical Systems III, V.I. Arnold,
    ed. Springer-Verlag.

  13. Ashbaugh, M.S., C.C. Chicone, and R.H. Cushman [1990] The twisting tennis
    racket. Dyn. Diff. Eqns. 3, 67 -85.

  14. Astrom, K.J. and K. Furuta [1996] Swinging up a pendulum by energy control.
    IFAC, San Francisco 13.

  15. Austin, M., P.S. Krishnaprasad, and L.S. Wang [1993] Almost Poisson inte-
    gration of rigid body systems. J. Comput. Phys. 107 , 105-117.

  16. Barth, E. and Leimkuhler, B. [1996a]. A semi-explicit, variable-stepsize in-
    tegrator for constrained dynamics. Mathematics department preprint series,
    University of Kansas.

Free download pdf