CONTENTS
Motivation
Seiberg-Witten and Pseudoholomorphic Curves
Definition of the Gromov Invariant
Bibliography
Dietmar Salamon, Lectures on Floer Homology
Introduction
Lecture 1. Symplectic Fixed Points and Morse Theory
The Arnold Conjecture
The Monotonicity Condition
The Morse-Smale-Witten Complex
Symplectic Action
Connecting Orbits
Moduli Spaces
Lecture 2. Fredholm Theory
Fredholm Operators
The Linearized Operator
LP-Estimates
The Conley-Zehnder Index
The Spectral Flow
Transversali ty
Exponential Convergence
Lecture 3. Floer Homology
Compactness
Floer Homology
Floer's Gluing Theorem
Invariance of Floer Homology
A Natural Isomorphism
Calabi-Yau Manifolds
N ovikov Rings
Floer Homology Revisited
Lecture 4. Gromov Compactness and Stable Maps
Bubbling
Soft Rescaling
Stable Maps
Deligne-Mumford Compactification
Lecture 5. Multi-Valued Perturbations
J-Holomorphic Spheres with Negative Chern Number
Multi-valued Perturbations
Local Slices
Branched Moduli Spaces
Perturbations and Stable Maps
Perturbations and Marked Points
Perturbations and Stable Maps
Compatibility
ix
136
136
137
141
143
145
147
147
149
150
154
155
157
159
159
160
161
165
166
168
170
173
173
176
179
181
184
185
186
187
189
189
191
193
199
205
205
207
209
212
218
219
219
220