Other problems^195
The standard condition
(54)
is imposed for r = R. As a final result we get the difference equation (51)
subject to the boundary conditions (53) and (54).
Let ~7 = y(f) be a solution of this problern. We begin by placing the
following problem for the error z = ~7 - u;
(55) r; = (i - ~) h, i = 2, 3, ... , N - 1,
r 1 a z 1 r, 1 _ d + ,/, _ O
r- I^1 z^1 <r1 - ,
1 i
where 1jJ is the approximation error equal to
1
1/J; = 1/;(f;) = -=-- (ri_ 1 a,:_ 1 ur,i),. i - d; ui +'Pi, i = 2, 3, ... , N - 1,
ri ,
with
u; = u(r;) = u;_ 112 •
Combination of the resulting expressions and the balance equation on the
interval r; _ 1 < r < ri gives
i = 2, 3, ... , N,
1'i
1/J,* = tp,· - 'Pi^0 - (d - d)^0 u + -^1 J
z z ' f. l h rq(r) (u(r)-u(f;)) dr = 0,
where
r· z r· z
(^0 1)
J
(^0 1)
J
'P· = f.h r f(r) dr, d
f; h
z z rq(r)dr.
z 1·.
z-1 r1:-1