1549301742-The_Theory_of_Difference_Schemes__Samarskii

(jair2018) #1
Higher-accuracy schemes

We will prove the indicated properties.
1) Property 1) follows directly from problem staternent (5 )-( 6).
2) Taking into account (5) and (6), we have for L = L(p,q)

= -v;(xi+i) + v~(xi_ 1 ).



  1. Applying Green's formula on the segment [xi-i, xi] yields


= ~ (v;)'(xi) v~(xi) - ~ (v;)'(x;) v;(x;_ 1 ) + v~(x;_ 1 ).
P; P;
Upon substituting here the relations
Xi
-(v;)'(x;)^1. = 1+ J
Pi

q(x) v; (x) dx,


x;+1


  • 1 ( V,: 2 )'( X; ) = -1 -
    Pi


j q(x) v;(x) dx


we establish property 3).

x· l

4) Having stipulated the conditions

the function v;+^1 ( x) does follow


x;+1
0 = j ( v;+^1 L v; - v; L v;+^1 ) dx
xi

1 dvi+1 1 I = 1
p dx x=x,

209
Free download pdf