216 Homogeneous Difference Schemes
and taking into account (3), we establish
(5)
1
2h
X;'i+l
(qu - .f) dx.
The approximation of the integral on the right-hand side of (5) can
be done using various quadrature formulae, for instance, by the formula of
trapezoids
or
1
2h
Xi+!
2
1
h j (qu - .f) dx i':::! (qu - f)i
x· i-1
Xji+l 1 •
(qu - .f) dx i':::! 4 ((qu - .f)i-1 + 2 (qu - f); + (q·u - f)i+i)
h2
= (qu. - f)i + 4 (qu - f);;;x,i.
With these, we arrive at the schernes of accuracy O(h^2 ):
(6) (a Yr:)·'" - q y = - .f ,
(7)
h2 h2
( ayx - 4 (q y)x) x - qy = -(.f + 4 fxx).
To approximate the boundary condition, for instance, at the point
x = 0, we apply (3) for i = 0
h
w 1 - w 0 = J ( qu - J) dx
0
and then adopt here
h
w 1 i':::! a 1 ux,o+ ~ J(qu-f) dx,
0
so that
h
a1 ux,O - (u111.o - μ1) i':::! ~ J (qu - .f) dx.
0