The Dirichlet difference problem for Poisson's equation 241
2
3 0 1
4
Figure.^8. Th e. uregu^1 ar " cross " pattern
where h 1 ± > 0, h 2 ± > 0 and hex+ f hex- at least for one value of CY (Fig. 8).
We approximate either of the operators L l and L 2 at three points
(x 1 -h 1 -,x 2 ), (x 1 +h 1 +,x 2 ), (x 1 ,x 2 )
(x1 'X2 - h2-), (x1 'X2 + h2+ ), (x1 'x2)
(the points 3, 1, 0),
(the points 4, 2, 0),
respectively. These approximations can be a.nanged via transformations
(Chapter 2, Section 1) such as
(12)
[
v(x 1 +h 1 +,x 2 )-v(x 1 ,x 2 )
hi+
_ V ( X 1 , x 2 ) - V ( X 1 - h1 - , x 2 ) l
h1- '
[
v (x 1 , x 2 + h 2 +) - v (x 1 , x 2 )
h2+
_ v(x 1 ,x 2 )-v(x 1 ,x 2 -hr)]
h2- '
where na = ~(hex- + hu+) for CY = 1, 2. On any irregular pattern the
difference Laplace operator takes the form
(13) Av=A 1 v+A~v=v"' ,;., "-' 1. 1 x·· +v"'_,,, .2 1 ' -•. ' 2