Operator-difference schemes 395
for all tn nr and that the operators ofsche1ne (4) carry out B~^1 ) into
B(2). h.
(1) (2)
Ah , Bh : Bh f-> Bh.
Let B~
1
) and B~
2
) be normed spaces with norms II· ll(lo) and 11 · llc 2 o)' u(t) be
an abstract B~^1 l-valued function of the argument t E [O, T] and let f(t) be
an abstract B~^2 )-valued function of the argument t E [O, T]. Furthermore,
we refer to linear operators P~a), CY= 1, 2, projecting B~a) onto B~a):
uh= P~^1 ) u E B~^1 )
f h = P~^2 ) f E B~^2 )
if u E 3(1) 0 '
if f E B~^2 l.
We take for granted the condition of the norm concordance
lhl~o lim II 1/Jh (a)ll (ah) -- ll^01 'I" '(o:)ll (ao)'
Let Yhr(tj) be a solution ofproble1n (4) and u(t) be a continuous
function of the argument t, so that
In such a setting the error z~ 7 = ~ 7 - u~ needs investigation. We say that
scheme ( 4) converges on an abstract function u(t) E B~^1 ) if
lhl~o,r~o lim O~J~Jo max llY~^7 - u~llc^1 h ) = 0.
Scheme ( 4) converges with the rate 0 (I h Im + Tk) or is of accuracy
O(lhlm + rk) on an abstract function u(t) E B~l) if
where M = const > 0 is independent of h and T both.
An a priori characteristic. of a scheme is the error of approximation.
The approximation error on a function u(t) for scheme ( 4) is known as the
residual
1/Jlir = 1/J( tj 1 h, T).